1 College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 2 School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, China
The effect of deformation temperature on the mechanical properties and deformation mechanism of Fe-20Mn-3Cu-1.3C twinning induced plasticity (TWIP) steel when deformed at -100-200℃ was analysed by temperature controlled tensile tests.The microstructure of tensile samples was observed and analysed, and then the effect between stacking fault energy of TWIP steels and deformation temperature was calculated by thermodynamic model. The results show that with the deformation temperature increasing from -100℃ to 200℃, the stacking fault energy of this steel gradually increases, but the volume fraction of twins gradually decreases. The tensile strength and yield strength will gradually decline, while the elongation of this steel firstly increases, then decreases. Furthermore, in this process, the plastic strain mechanism is transformed from twinning to slipping. The stacking fault energy γSFE is calculated by the equation γSFE=26.73+9.38×10-2T+4.22×10-4T2-4.47×10-7T3. As compared with slipping, the twinning can obtain higher strain hardening rate, which leads to high strength and plasticity of the TWIP steel.
GRSSEL O, KRGER L, FROMMEYER G, et al High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development properties application[J]. International Journal of Plasticity, 2000, 16 (10-11): 1391- 1409.
PENG Xian, ZHU Ding-yi, HU Zhen-ming, et al Effect of carbon content on microstructure and mechanical properties of Fe-Mn-Cu-C TWIP steels[J]. Iron and Steel, 2013, 48 (5): 55- 61.
3
FROMMEYER G, BRUX U, NEUMANN P Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. Transactions of the Iron and Steel Institute of Japan, 2003, 43 (3): 438- 446.
4
GRSSEL O, FROMMEYER G Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J]. Materials Science and Technology, 1998, 14 (12): 1213- 1217.
DAI Yong-juan, TANG Di, MI Zhen-li, et al The influence of manganese on the stacking fault energy and deformation mechanisms of the TWIP steel[J]. Journal of Materials Engineering, 2009, (7): 39- 42.
6
ALLAIN S, CHATEAU J P, BOUAZIZ O A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel[J]. Materials Science and Engineering: A, 2004, 143-147, 387- 389.
7
FROMMEYER G, BRVX U Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research International, 2006, 77 (9-10): 627- 633.
DAI Yong-juan, MI Zhen-li, TANG Di, et al Microstructure and mechanical properties of the Fe-Mn-C TWIP steel[J]. Shanghai Metals, 2007, 29 (5): 132- 136.
9
LEE S, KIM J, LEE S-J, et al Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel[J]. Scripta Materialia, 2011, 65 (12): 1073- 1076.
10
KIM S-J, CHANG G-L, LEE T-H, et al Effect of Cu, Cr and Ni on mechanical properties of 0[J]. 15wt. % C TRIP-aided cold rolled steels[J]. Scripta Materialia, 2003, 48 (5): 539- 544.
YI Wei-fa, ZHU Ding-yi, YANG Ze-bin, et al Effect of copper content on microstructure and mechanical properties of high carbon TWIP steel[J]. Iron and Steel, 2011, 46 (11): 71- 76.
QIN Xiao-mei, CHEN Li-qing, DI Hong-shuang, et al Effect of deformation temperature on tensile deformation mechanism of Fe-23Mn-2Al-0[J]. 2C TWIP steel[J]. Acta Metallurgica Sinica, 2011, 47 (9): 1117- 1122.
13
ALLAIN S, CHATEAU J P, BOUAZIZ O, et al Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering: A, 2004, 387-389, 158- 162.
14
CURTZE S, KUOKKALA V T Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58 (15): 5129- 5141.
15
DUMAY A, CHATEAU J P, ALLAIN S, et al Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483-484, 184- 187.
16
CURTZE S, KUOKKALA V T, OIKARI A, et al Thermodynamic modeling of the stacking fault energy of austenitic steels[J]. Acta Materialia, 2011, 59 (3): 1068- 1076.
17
GRASSEL O, FROMMEYER G, DERDER C, et al Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels[J]. Le Journal de Physique, 1997, 7 (5): 383- 388.
18
ZHENG C, XIAO N, LI D, et al Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: a cellular automaton modeling[J]. Computational Materials Science, 2008, 44 (2): 507- 514.
LU Fa-yun, LIU Tong-yan, YANG Ping, et al Influence of deformation temperature on the microstructure and properties of a high manganese TRIP/TWIP steel[J]. Journal of Wuhan University of Science and Technology, 2012, 35 (4): 281- 288.
WANG Lei, LI Yu-long, SUO Tao, et al Mechanical behavior of commonly used aeronautical aluminum alloys under dynamic tension[J]. Journal of Aeronautical Materials, 2013, 33 (4): 71- 77.
21
BARBIER D, GEY N, ALLAIN S, et al Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions[J]. Materials Science and Engineering: A, 2009, 500 (1-2): 196- 206.
GUO Peng-cheng, QIAN Li-he, MENG Jiang-ying, et al Monotonic tension and tension-compression cyclic deformation behaviors of high manganese austenitic TWIP steel[J]. Acta Metallurgica Sinica, 2014, 50 (4): 415- 422.
23
MIGUEL M C, VESPINGANI A, ZAPPERI S, et al Intermittent dislocation flow in viscoplastic deformation[J]. Nature, 2001, 410 (6829): 667- 671.
24
EL-DANAF E, KALIDINDI S R, DOHERTY R D Influence of grain size and stacking-fault energy on deformation twinning in fcc metals[J]. Metall Mater Trans A, 1999, 30 (5): 1223- 1233.
25
EL-DANAF E, KALIDINDI S R, DOHERTY R D Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals[J]. International Journal of Plasticity, 2001, 17 (9): 1245- 1265.
MI Zhen-li, JING Hai-tao, JIANG Hai-tao, et al Work hardening behavior of Fe-Mn-Si-Al and Fe-Mn-C TWIP steels[J]. Journal of University of Science and Technology Beijing, 2013, 35 (4): 465- 473.
27
GUTIERREZ-URRUTIA I, RAABE D Grain size effect on strain hardening in twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66 (12): 992- 996.
28
JIN J E, LEE Y K Strain hardening behavior of a Fe-18Mn-0[J]. 6C-1.5Al TWIP steel[J]. Materials Science and Engineering: A, 2009, 527 (1-2): 157- 161.
YAN Shi-xing, DONG Shi-yun, XU Bin-shi, et al Effect of preheating temperature on microstructure and property of laser clad Ni-based alloy coating on gray cast iron substrate[J]. Journal of Materials Engineering, 2015, 43 (1): 30- 36.
30
KALIDINDI S R Modeling the strain hardening response of low SFE FCC alloys[J]. International Journal of Plasticity, 1998, 14 (12): 1265- 1277.