Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (1): 11-18    DOI: 10.11868/j.issn.1001-4381.2016.01.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响
王建亭1, 周荣生1, 王明杰1,2, 朱定一1,*()
1 福州大学材料科学与工程学院, 福州 350108
2 福建工程学院材料科学与工程学院, 福州 350108
Effect of Deformation Temperature on Tensile Deformation Behavior of Fe-20Mn-3Cu-1.3C TWIP Steel
Jian-ting WANG1, Rong-sheng ZHOU1, Ming-jie WANG1,2, Ding-yi ZHU1,*()
1 College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
2 School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, China
全文: PDF(2970 KB)   HTML ( 70 )  
输出: BibTeX | EndNote (RIS)      
摘要 

运用温控拉伸实验,分析了在-100~200℃范围内变形时形变温度对Fe-20Mn-3Cu-1.3C钢力学性能和形变机理的影响。观察分析了拉伸试样的显微组织,并利用热力学经典模型,估算了温度对孪晶诱发塑性(TWIP)钢层错能的影响。结果表明:随着形变温度的升高,TWIP钢的层错能显著增加,基体中形变孪晶的体积分数逐渐减少,抗拉强度和屈服强度呈下降趋势,而伸长率先升高后降低,塑性变形机制也由孪生为主逐渐转变为以滑移为主。层错能的拟合公式为γSFE=26.73+9.38×10-2T+4.22×10-4T2-4.47×10-7T3,与滑移相比,孪生可获得更高的应变硬化率,从而使TWIP钢获得高强度和高塑性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王建亭
周荣生
王明杰
朱定一
关键词 TWIP钢形变温度应变硬化率孪晶层错能    
Abstract

The effect of deformation temperature on the mechanical properties and deformation mechanism of Fe-20Mn-3Cu-1.3C twinning induced plasticity (TWIP) steel when deformed at -100-200℃ was analysed by temperature controlled tensile tests.The microstructure of tensile samples was observed and analysed, and then the effect between stacking fault energy of TWIP steels and deformation temperature was calculated by thermodynamic model. The results show that with the deformation temperature increasing from -100℃ to 200℃, the stacking fault energy of this steel gradually increases, but the volume fraction of twins gradually decreases. The tensile strength and yield strength will gradually decline, while the elongation of this steel firstly increases, then decreases. Furthermore, in this process, the plastic strain mechanism is transformed from twinning to slipping. The stacking fault energy γSFE is calculated by the equation γSFE=26.73+9.38×10-2T+4.22×10-4T2-4.47×10-7T3. As compared with slipping, the twinning can obtain higher strain hardening rate, which leads to high strength and plasticity of the TWIP steel.

Key wordsTWIP steel    deformation temperature    strain hardening rate    twins    stacking fault energy
收稿日期: 2015-08-11      出版日期: 2016-01-20
基金资助:福建省高校产学合作科技重大项目(2011H6012);福建省自然科学基金资助项目(2011J01292)
通讯作者: 朱定一     E-mail: zdy7081@163.com
作者简介: 朱定一(1958-),男,教授,博士,主要从事高强高塑性Fe-Mn-Cu-CTWIP钢的性能与组织的研究和材料的表面与界面张力的表征与计算研究,联系地址:福建省福州市上街镇学园路2号福州大学旗山校区材料科学与工程学院(350108)E-mail:zdy7081@163.com
引用本文:   
王建亭, 周荣生, 王明杰, 朱定一. 形变温度对Fe-20Mn-3Cu-1.3C TWIP钢拉伸变形行为的影响[J]. 材料工程, 2016, 44(1): 11-18.
Jian-ting WANG, Rong-sheng ZHOU, Ming-jie WANG, Ding-yi ZHU. Effect of Deformation Temperature on Tensile Deformation Behavior of Fe-20Mn-3Cu-1.3C TWIP Steel. Journal of Materials Engineering, 2016, 44(1): 11-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.01.002      或      http://jme.biam.ac.cn/CN/Y2016/V44/I1/11
Fig.1  Fe-20Mn-3Cu-1.3C TWIP钢固溶处理后的金相组织
(a)及XRD谱图(b)
Fig.2  Fe-20Mn-3Cu-1.3C TWIP钢层错能随温度的变化曲线
Fig.3  Fe-20Mn-3Cu-1.3C TWIP钢在不同温度拉伸变形时的工程应力-应变曲线(a)及放大图(b)
Fig.4  Fe-20Mn-3Cu-1.3C TWIP钢的屈服强度、 抗拉强度以及伸长率随变形温度的变化曲线
Fig.5  Fe-20Mn-3Cu-1.3C TWIP钢在不同温度下拉伸变形后的金相组织
(a)-100℃;(b)0℃;(c)25℃;(d)200℃
Fig.6  Fe-20Mn-3Cu-1.3C TWIP钢在不同温度下变形时 应变硬化速率(dσ/dε)随真应变的变化曲线
Fig.7  不同条件下Fe-20Mn-3Cu-1.3C TWIP钢的TEM组织
(a)ε=5%,25℃;(b)ε=15%,25℃;(c)ε=30%,25℃; (d)ε=55%,25℃;(e)25℃下拉伸至断裂;(f)ε=50%,200℃
1 GRSSEL O, KRGER L, FROMMEYER G, et al High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development properties application[J]. International Journal of Plasticity, 2000, 16 (10-11): 1391- 1409.
2 彭仙, 朱定一, 胡真明, 等 碳含量对Fe-Mn-Cu-C系TWIP钢组织和力学性能的影响[J]. 钢铁, 2013, 48 (5): 55- 61.
2 PENG Xian, ZHU Ding-yi, HU Zhen-ming, et al Effect of carbon content on microstructure and mechanical properties of Fe-Mn-Cu-C TWIP steels[J]. Iron and Steel, 2013, 48 (5): 55- 61.
3 FROMMEYER G, BRUX U, NEUMANN P Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. Transactions of the Iron and Steel Institute of Japan, 2003, 43 (3): 438- 446.
4 GRSSEL O, FROMMEYER G Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J]. Materials Science and Technology, 1998, 14 (12): 1213- 1217.
5 代永娟, 唐荻, 米振莉, 等 锰元素对TWIP钢层错能和变形机制的影响[J]. 材料工程, 2009, (7): 39- 42.
5 DAI Yong-juan, TANG Di, MI Zhen-li, et al The influence of manganese on the stacking fault energy and deformation mechanisms of the TWIP steel[J]. Journal of Materials Engineering, 2009, (7): 39- 42.
6 ALLAIN S, CHATEAU J P, BOUAZIZ O A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel[J]. Materials Science and Engineering: A, 2004, 143-147, 387- 389.
7 FROMMEYER G, BRVX U Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research International, 2006, 77 (9-10): 627- 633.
8 代永娟, 米振莉, 唐荻, 等 Fe-Mn-C系TWIP钢的组织和性能[J]. 上海金属, 2007, 29 (5): 132- 136.
8 DAI Yong-juan, MI Zhen-li, TANG Di, et al Microstructure and mechanical properties of the Fe-Mn-C TWIP steel[J]. Shanghai Metals, 2007, 29 (5): 132- 136.
9 LEE S, KIM J, LEE S-J, et al Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel[J]. Scripta Materialia, 2011, 65 (12): 1073- 1076.
10 KIM S-J, CHANG G-L, LEE T-H, et al Effect of Cu, Cr and Ni on mechanical properties of 0[J]. 15wt. % C TRIP-aided cold rolled steels[J]. Scripta Materialia, 2003, 48 (5): 539- 544.
11 易炜发, 朱定一, 杨泽斌, 等 铜含量对高碳TWIP钢组织和力学性能的影响[J]. 钢铁, 2011, 46 (11): 71- 76.
11 YI Wei-fa, ZHU Ding-yi, YANG Ze-bin, et al Effect of copper content on microstructure and mechanical properties of high carbon TWIP steel[J]. Iron and Steel, 2011, 46 (11): 71- 76.
12 秦小梅, 陈礼清, 邸洪双, 等 变形温度对Fe-23Mn-2Al-0[J]. 2C TWIP钢变形机制的影响[J]. 金属学报, 2011, 47 (9): 1117- 1122.
12 QIN Xiao-mei, CHEN Li-qing, DI Hong-shuang, et al Effect of deformation temperature on tensile deformation mechanism of Fe-23Mn-2Al-0[J]. 2C TWIP steel[J]. Acta Metallurgica Sinica, 2011, 47 (9): 1117- 1122.
13 ALLAIN S, CHATEAU J P, BOUAZIZ O, et al Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering: A, 2004, 387-389, 158- 162.
14 CURTZE S, KUOKKALA V T Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58 (15): 5129- 5141.
15 DUMAY A, CHATEAU J P, ALLAIN S, et al Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483-484, 184- 187.
16 CURTZE S, KUOKKALA V T, OIKARI A, et al Thermodynamic modeling of the stacking fault energy of austenitic steels[J]. Acta Materialia, 2011, 59 (3): 1068- 1076.
17 GRASSEL O, FROMMEYER G, DERDER C, et al Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels[J]. Le Journal de Physique, 1997, 7 (5): 383- 388.
18 ZHENG C, XIAO N, LI D, et al Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: a cellular automaton modeling[J]. Computational Materials Science, 2008, 44 (2): 507- 514.
19 鲁法云, 刘彤妍, 杨平, 等 形变温度对高锰TRIP/TWIP钢拉伸性能和组织的影响[J]. 武汉科技大学学报, 2012, 35 (4): 281- 288.
19 LU Fa-yun, LIU Tong-yan, YANG Ping, et al Influence of deformation temperature on the microstructure and properties of a high manganese TRIP/TWIP steel[J]. Journal of Wuhan University of Science and Technology, 2012, 35 (4): 281- 288.
20 王雷, 李玉龙, 索涛, 等 航空常用铝合金动态拉伸力学性能探究[J]. 航空材料学报, 2013, 33 (4): 71- 77.
20 WANG Lei, LI Yu-long, SUO Tao, et al Mechanical behavior of commonly used aeronautical aluminum alloys under dynamic tension[J]. Journal of Aeronautical Materials, 2013, 33 (4): 71- 77.
21 BARBIER D, GEY N, ALLAIN S, et al Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions[J]. Materials Science and Engineering: A, 2009, 500 (1-2): 196- 206.
22 郭鹏程, 钱立和, 孟江英, 等 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为[J]. 金属学报, 2014, 50 (4): 415- 422.
22 GUO Peng-cheng, QIAN Li-he, MENG Jiang-ying, et al Monotonic tension and tension-compression cyclic deformation behaviors of high manganese austenitic TWIP steel[J]. Acta Metallurgica Sinica, 2014, 50 (4): 415- 422.
23 MIGUEL M C, VESPINGANI A, ZAPPERI S, et al Intermittent dislocation flow in viscoplastic deformation[J]. Nature, 2001, 410 (6829): 667- 671.
24 EL-DANAF E, KALIDINDI S R, DOHERTY R D Influence of grain size and stacking-fault energy on deformation twinning in fcc metals[J]. Metall Mater Trans A, 1999, 30 (5): 1223- 1233.
25 EL-DANAF E, KALIDINDI S R, DOHERTY R D Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals[J]. International Journal of Plasticity, 2001, 17 (9): 1245- 1265.
26 米振莉, 靖海涛, 江海涛, 等 Fe-Mn-Si-Al系和Fe-Mn-C系TWIP钢加工硬化行为[J]. 北京科技大学学报, 2013, 35 (4): 465- 473.
26 MI Zhen-li, JING Hai-tao, JIANG Hai-tao, et al Work hardening behavior of Fe-Mn-Si-Al and Fe-Mn-C TWIP steels[J]. Journal of University of Science and Technology Beijing, 2013, 35 (4): 465- 473.
27 GUTIERREZ-URRUTIA I, RAABE D Grain size effect on strain hardening in twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66 (12): 992- 996.
28 JIN J E, LEE Y K Strain hardening behavior of a Fe-18Mn-0[J]. 6C-1.5Al TWIP steel[J]. Materials Science and Engineering: A, 2009, 527 (1-2): 157- 161.
29 闫世兴, 董世运, 徐滨士, 等 预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程, 2015, 43 (1): 30- 36.
29 YAN Shi-xing, DONG Shi-yun, XU Bin-shi, et al Effect of preheating temperature on microstructure and property of laser clad Ni-based alloy coating on gray cast iron substrate[J]. Journal of Materials Engineering, 2015, 43 (1): 30- 36.
30 KALIDINDI S R Modeling the strain hardening response of low SFE FCC alloys[J]. International Journal of Plasticity, 1998, 14 (12): 1265- 1277.
[1] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[2] 刘敬勇, 卢磊, 钟政烨. 高应变速率下等径角挤压高纯粗晶铝中的形变孪晶与退火孪晶[J]. 材料工程, 2021, 49(4): 89-94.
[3] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[4] 石晶晶, 叶朋, 崔凯旋, 汪炳叔, 邓丽萍, 王晨, 李强. 孪晶诱发的AZ31镁合金静态再结晶行为[J]. 材料工程, 2018, 46(11): 134-140.
[5] 闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
[6] 陈斌, 孙威, 赵颉, 胡常青. 亚稳β型钛合金中的{332}<113>变形孪晶[J]. 材料工程, 2017, 45(1): 111-119.
[7] 邓仲华, 姚志浩, 董建新, 国为民. TbDyFe中稀土元素的烧损对组织和性能的影响[J]. 材料工程, 2016, 44(8): 34-39.
[8] 宋广胜, 陈强强, 徐勇, 李娟, 张士宏. AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J]. 材料工程, 2016, 44(4): 1-8.
[9] 王玉昌, 兰鹏, 李杨, 张家泉. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30-38.
[10] 唐群华, 廖晓舟, 戴品强. Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变[J]. 材料工程, 2015, 43(12): 45-51.
[11] 陈先华. 孪晶对Cu的力学和电学性能影响的研究进展[J]. 材料工程, 2011, 0(9): 87-91.
[12] 代永娟, 唐荻, 米振莉, 江海涛, 吕建崇. 锰元素对TWIP钢层错能和变形机制的影响[J]. 材料工程, 2009, 0(7): 39-42.
[13] 江海涛, 米振莉, 唐荻, 王海全, 代永娟. TWIP钢拉伸变形过程中微观组织的原位观察[J]. 材料工程, 2008, 0(1): 38-41.
[14] 李淑波, 吴昆, 郑明毅, 熊守美. 挤压对AZ91铸造镁合金力学性能的影响[J]. 材料工程, 2006, 0(12): 54-57.
[15] 张旺峰, 陈瑜眉, 朱金华. 低层错能奥氏体钢的变形硬化特点[J]. 材料工程, 2000, 0(2): 25-27,36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn