Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (1): 33-39    DOI: 10.11868/j.issn.1001-4381.2016.01.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
7A85铝合金的热压缩流变行为与显微组织
仇琍丽1, 高文理1, 陆政2, 冯朝辉2
1. 湖南大学材料科学与工程学院, 长沙 410082;
2. 北京航空材料研究院, 北京 100095
Flow Behavior and Microstructure of 7A85 Aluminum Alloy During Hot Compression
QIU Li-li1, GAO Wen-li1, LU Zheng2, FENG Zhao-hui2
1. College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3107 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Gleeble-3500热模拟试验机对铸态7A85铝合金进行高温热压缩实验,研究了7A85铝合金在变形温度为300~450℃、应变速率为0.01~10s-1条件下的流变行为与显微组织。结果表明:流变应力在变形初期迅速升至峰值,随后由于动态回复和动态再结晶有所降低,最后趋于稳态;峰值流变应力随变形温度的降低和应变速率的增加而增大,可用Zener-Hollomon参数描述。采用线性回归方法获得7A85铝合金高温条件下流变应力本构方程,其变形激活能Q为253.68kJ/mol。随着lnZ降低,晶粒沿径向拉长,亚晶长大,位错密度和第二相数量降低。软化机制主要为动态再结晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇琍丽
高文理
陆政
冯朝辉
关键词 7A85铝合金热压缩本构方程显微组织    
Abstract:The flow stress behavior and the microstructure evolution of as-cast 7A85 aluminum alloy were studied by the hot compression test, which was performed on Gleeble-3500 thermal simulation machine at 300-450℃ and strain rate 0.01-10s-1. The results show that the true stress is rising to peak stress rapidly in the initial deformation period, then the flow stress decreases due to dynamic recovery and dynamic recrystallization, finally the flow stress tends to be stable. The peak flow stress increases with decreasing deformation temperature and increasing strain rate. It can be described by Zener-Hollomon parameter. The constitutive equation of 7A85 aluminum alloy is obtained by linear regression, and the hot deformation activation energy Q is 253.68kJ/mol. With the decreasing of lnZ, the grains are elongated radially, the sub-grains grow up, the dislocation density and the quantity of second phase particles decrease. The softening mechanism is mainly dynamic recrystallization.
Key words7A85 aluminum alloy    hot compression    constitutive equation    microstructure
收稿日期: 2014-07-10      出版日期: 2016-01-20
中图分类号:  TG146.2  
通讯作者: 高文理(1964-),男,副教授,工学博士,研究方向:铝合金、镁合金及金属基复合材料,联系地址:湖南省长沙市麓山南路2号湖南大学材料学院(410082)     E-mail: wenligaohd@163.com
引用本文:   
仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
QIU Li-li, GAO Wen-li, LU Zheng, FENG Zhao-hui. Flow Behavior and Microstructure of 7A85 Aluminum Alloy During Hot Compression. Journal of Materials Engineering, 2016, 44(1): 33-39.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.01.005      或      http://jme.biam.ac.cn/CN/Y2016/V44/I1/33
[1] STARINK M J, WANG S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2003, 51(17):5131-5150.
[2] 王少华,马志锋,张显峰,等. Al-Zn-Mg-Cu-Zr-0.5Er合金型材组织性能研究[J].材料工程, 2014,(3):27-33. WANG Shao-hua, MA Zhi-feng, ZHANG Xian-feng, et al. Investigation on microstructure and properties of Al-Zn-Mg-Cu-Zr-0.5Er alloy profile[J]. Journal of Materials Engineering, 2014,(3):27-33.
[3] SHUEY R T, BARLAT F, KARABIN M E, et al. Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2009, 40(2):365-376.
[4] LI X M, STARINK M J. Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2011, 509(2):471-476.
[5] TALEGHANI J, RUIZ NAVAS E M, SALEHI M, et al. Hot deformation behaviour and flow stress prediction of 7075 aluminum alloy powder compacts during compression at elevated temperatures[J]. Materials Science and Engineering:A, 2012, 534:624-631.
[6] ZHANG H, JIN N P, CHEN J H. Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3):437-442.
[7] 陈学海,陈康华,梁信,等. 7085铝合金热变形的流变应力行为和显微组织[J].粉末冶金材料科学与工程, 2011, 16(2):225-230. CHEN Xue-hai, CHEN Kang-hua, LIANG Xin, et al. Flow stress behavior and microstructure of 7085 aluminum alloy during hot deformation[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(2):225-230.
[8] 陈学海,陈康华,董朋轩,等. 7085铝合金的热变形组织演变及动态再结晶模型[J].中国有色金属学报, 2013, 23(1):44-50. CHEN Xue-hai, CHEN Kang-hua, DONG Peng-xuan, et al. Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2013,23(1):44-50.
[9] CHEN S Y, CHEN K H, PENG G S, et al. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy[J]. Journal of Alloys and Compounds, 2012, 537:338-345.
[10] 唐秋菊. 7A85铝合金降温时效工艺的研究[D].哈尔滨:哈尔滨工业大学, 2010.
[11] 贾逢博,易幼平,黄施全,等. 7A85铝合金热压缩流变行为与本构方程研究[J].热加工工艺, 2010,39(16):19-21. JIA Feng-bo, YI You-ping, HUANG Shi-quan, et al. Study on flow behavior and constitutive equation of 7A85 aluminum alloy during hot compression[J]. Hot Working Technology, 2010,39(16):19-21.
[12] ROKNI M R, ZAREI-HANZAKI A, ROOSTAEI A A, et al. An investigation into the hot deformation characteristics of 7075 aluminum alloy[J]. Materials & Design, 2011, 32(4):2339-2344.
[13] POIRIER J P,关德林.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.33-67.
[14] SHEPPARD T, JACKSON A. Constitutive equations for use in prediction of flow stress during extrusion of aluminum alloys[J]. Materials Science and Technology, 1997, 13(3):203-209.
[15] 陶乐晓,臧金鑫,张坤,等.新型高强Al-Zn-Mg-Cu合金的热变形行为和热加工图[J].材料工程, 2013, (1):16-20. TAO Le-xiao, ZANG Jin-xin, ZHANG Kun, et al. Hot deformation behavior and processing map for new Al-Zn-Mg-Cu alloy[J]. Journal of Materials Engineering,2013,(1):16-20.
[16] HU H E, ZHEN L, YANG L, et al. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation[J]. Materials Science and Engineering:A, 2008, 488(1):64-71.
[17] WUSATOWSKA-SARNEK A M, MIURA H, SAKAI T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Materials Science and Engineering:A, 2002, 323(1):177-186.
[1] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[2] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[3] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[4] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[5] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[6] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[7] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
[8] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[9] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[10] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[11] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[12] 刘伟, 熊华平, 李能, 陈波. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程, 2018, 46(2): 27-33.
[13] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[14] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
[15] 倪永恒, 朱有利, 侯帅. 超声冲击处理时间对17CrNiMo6钢表层组织细化与性能的影响[J]. 材料工程, 2018, 46(11): 155-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn