Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (1): 47-53    DOI: 10.11868/j.issn.1001-4381.2016.01.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
变形条件对2519A铝合金动态力学性能与组织演化的影响
刘文辉1,2,*(), 何圳涛1,2, 唐昌平1,2, 陈宇强1,2
1 湖南科技大学机电工程学院, 湖南湘潭 411201
2 湖南科技大学高温耐磨材料及制备技术湖南省国防科技重点实验室, 湖南湘潭 411201
Effect of Deformation Condition on Dynamic Mechanical Properties and Microstructure Evolution of 2519A Aluminum Alloy
Wen-hui LIU1,2,*(), Zhen-tao HE1,2, Chang-ping TANG1,2, Yu-qiang CHEN1,2
1 College of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
2 Key Laboratory of High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
全文: PDF(3669 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为研究温度与应变率对2519A铝合金动态力学行为及组织演化的影响,采用霍普金森压杆对2519A铝合金进行了不同温度(-90~350℃)、不同应变率下的动态冲击压缩实验,分析了该合金的动态力学性能,并结合金相显微镜与透射电镜对合金在冲击变形后的微观组织进行分析。结果表明:在250~350℃的高温环境冲击下,合金的流变应力迅速下降,组织以形变带为主,同时组织内伴随有明显的动态回复和动态再结晶。在20~150℃的环境中进行动态冲击,合金变形时组织出现了典型的绝热剪切带特征。在室温、应变率达到8200s-1时,应变率强化效果发生转变。随着温度降至-90℃,在绝热剪切带内的组织出现了长度较短、连续性差的微裂纹,同时组织内的长条状第二相粒子发生不同程度的脆性断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘文辉
何圳涛
唐昌平
陈宇强
关键词 2519A铝合金绝热剪切带动态力学性能裂纹    
Abstract

To study the effect of temperature and strain rate on the dynamic mechanical properties and microstructure evolution of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact compression tests using the split Hopkinson pressure bar at different temperatures (-90-350℃) and different strain rates. The dynamic mechanical properties were analyzed, and the microstructure after impact was also investigated by metallographic microscope and transmission electron microscopy (TEM). The results show that the impact flow stress decreases rapidly at 250-350℃. The deformation band is the main deformation character, and obvious dynamic recovery and dynamic recrystallization are generated, so the dislocation density is low. Adiabatic shear band (ASB) occurs when the alloy deforms after dynamic impact at 20-150℃. The strain rate strengthening effect changes at room temperature with strain rate 8200s-1. When temperature drops to -90℃, some short and discontinuous microcracks appear within the ASBs, and some long strip particles are broken by brittle fracture.

Key words2519A aluminum alloy    ASB    dynamic mechanical property    crack
收稿日期: 2014-08-11      出版日期: 2016-01-20
基金资助:国家自然科学基金资助项目(51475162,51405153);湖南省自然科学基金重点项目(14JJ5015)
通讯作者: 刘文辉     E-mail: lwh@hnust.edu.cn
作者简介: 刘文辉(1978-),男,博士,副教授,主要从事轻合金加工工艺与性能、损伤疲劳与断裂等方面的研究工作,联系地址:湖南省湘潭市雨湖区桃园路湖南科技大学机电工程学院(411201)E-mail:lwh@hnust.edu.cn
引用本文:   
刘文辉, 何圳涛, 唐昌平, 陈宇强. 变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程, 2016, 44(1): 47-53.
Wen-hui LIU, Zhen-tao HE, Chang-ping TANG, Yu-qiang CHEN. Effect of Deformation Condition on Dynamic Mechanical Properties and Microstructure Evolution of 2519A Aluminum Alloy. Journal of Materials Engineering, 2016, 44(1): 47-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.01.007      或      http://jme.biam.ac.cn/CN/Y2016/V44/I1/47
Fig.1  霍普金森压杆冲击压缩实验
(a)低温冲击实验;(b)高温冲击实验
Fig.2  -90~350℃不同应变率下2519A铝合金的应力-应变曲线
(a)1400s-1;(b)2500s-1;(c)4200s-1
Fig.3  屈服强度随应变率
(a)与温度(b)的变化
Fig.4  不同温度下样品冲击后的宏观照片
(a)-90℃;(b)20℃;(c)150℃;(d)250℃;(e)350℃
Fig.5  不同温度下样品冲击后的金相照片
(a)-90℃,1431s-1;(b)-90℃,3532s-1;(c)-90℃,4217s-1;(d)150℃,1515s-1; (e)150℃,2263s-1;(f)150℃,2726s-1;(g)350℃,1600s-1;(h)350℃,2205s-1;(i)350℃,3282s-1
Fig.6  350℃条件下冲击后的组织形态
(a)动态回复组织;(b)动态再结晶组织
Fig.7  -90℃条件下冲击后的组织形态
(a)亚晶组织;(b)再结晶组织
Fig.8  不同冲击条件下试样的TEM照片
(a)-90℃,3532s-1;(b)350℃,3282s-1
1 BAXTER G J, FURU T, WHITEMAN J A, et al The influence of transient strain-rate deformation conditions on the deformed microstructure of aluminum Al-1%Mg[J]. Acta Mater, 1999, 47 (8): 2367- 2376.
2 FISHER J J Jr Aluminum alloy 2519 in military vehicles[J]. Advanced Materials and Processes, 2002, 160 (9): 43- 47.
3 GAO Z G, ZHANG X M, ZHAO Y S, et al The effect of strain rate on the microstructure of 2519A aluminium alloy plate impacted at 573K[J]. Journal of Alloys and Compounds, 2009, 481 (1-2): 422- 426.
4 高志国, 张新明, 陈明安, 等 温度对2519A铝合金高应变速率下动态屈服应力及显微组织的影响[J]. 稀有金属材料与工程, 2009, 35 (5): 881- 886.
4 GAO Zhi-guo, ZHANG Xin-ming, CHEN Ming-an, et al Effect of temperature on dynamic yield stress and microstructure of 2519A aluminum alloy at high strain rate[J]. Rare Metal Materials and Engineering, 2009, 35 (5): 881- 886.
5 CHRISTENSEN R J, SWANSON S R, BROWN W S Split Hopkinson bar tests on rock under confining pressure[J]. Experimental Mechanics, 1972, 12 (11): 508- 513.
6 伍波, 赵满秀, 刘婷婷, 等 新型形变热处理2618铝合金的显微组织与力学性能研究[J]. 航空材料学报, 2013, 33 (5): 29- 35.
6 WU Bo, ZHAO Man-xiu, LIU Ting-ting, et al Microstructure and mechanical properties of aluminum alloy 2618 prepared with new thermomechanical treatment[J]. Journal of Aeronautical Materials, 2013, 33 (5): 29- 35.
7 陈鼎, 陈振华 铝合金在低温下的力学性能[J]. 宇航材料工艺, 2000, 30 (4): 1- 7.
7 CHEN Ding, CHEN Zhen-hua Mechanical properties of pure aluminum alloys at cryogenic temperatures[J]. Aerospace Materials &Technology, 2000, 30 (4): 1- 7.
8 刘瑛, 张新明, 李慧中, 等 3种高强铝合金的低温拉伸力学性能研究[J]. 金属热处理, 2007, 32 (1): 53- 56.
8 LIU Ying, ZHANG Xin-ming, LI Hui-zhong, et al Tensile properties of three kinds of aluminum alloys at low temperature[J]. Heat Treatment of Metals, 2007, 32 (1): 53- 56.
9 刘瑛, 张新明, 李慧中, 等 2519铝合金的低温拉伸力学性能[J]. 中南大学学报(自然科学版), 2006, 37 (4): 641- 645.
9 LIU Ying, ZHANG Xin-ming, LI Hui-zhong, et al Tensile properties of 2519 aluminum alloy at low temperature[J]. Journal of Central South University(Science and Technology), 2006, 37 (4): 641- 645.
10 李娜, 李玉龙, 郭伟国 3种铝合金材料动态性能及其温度相关性对比研究[J]. 航空学报, 2008, 29 (4): 903- 908.
10 LI Na, LI Yu-long, GUO Wei-guo Comparison of mechanical properties and their temperature dependencies for three aluminium alloys under dynamic load[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29 (4): 903- 908.
11 XU Y B, ZHONG W L, CHEN Y J, et al Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy[J]. Materials Science and Engineering: A, 2001, 299 (1-2): 287- 295.
12 姚俊臣, 文丽芳, 韩寿波, 等 高应变率下阻尼铝合金的动态力学性能研究[J]. 材料工程, 2006, (6): 46- 48.
12 YAO Jun-chen, WEN Li-fang, HAN Shou-bo, et al The dynamic mechanical properties of damping aluminum alloys under high strain rate[J]. Journal of Materials Engineering, 2006, (6): 46- 48.
13 毛萍莉, 席通, 刘正, 等 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, (5): 53- 58.
13 MAO Ping-li, XI Tong, LIU Zheng, et al Dynamic mechanical property of AZ31 magnesium alloy welding joint under high strain rate[J]. Journal of Materials Engineering, 2014, (5): 53- 58.
14 唐长国, 朱金华, 周惠久 金属材料屈服强度的应变率效应和热激活理论[J]. 金属学报, 1995, 31 (6): 248- 253.
14 TANG Chang-guo, ZHU Jin-hua, ZHOU Hui-jiu Correlation between yield stress and strain rate for metallic materials and thermal activation approach[J]. Acta Metallurgica Sinica, 1995, 31 (6): 248- 253.
15 肖大武, 李英雷, 蔡灵仓 绝热剪切研究进展[J]. 实验力学, 2010, 25 (4): 463- 475.
15 XIAO Da-wu, LI Ying-lei, CAI Ling-cang Progress in research on adiabatic shearing[J]. Journal of Experimental Mechanics, 2010, 25 (4): 463- 475.
[1] 岑耀东, 郭曜珲, 马潇, 陈林, 包喜荣. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129.
[2] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[3] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[4] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[5] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7××× 系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[6] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[7] 刘凯, 崔荣洪, 侯波, 何宇廷, 牛欢. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程, 2019, 47(9): 160-166.
[8] 刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
[9] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[10] 赵玲, 刘光磊, 张思源, 李茂军, 刘简宁, 李明辉. 固溶时效深冷复合处理对ZCuAl10Fe3Mn2合金微观组织和热疲劳性能的影响[J]. 材料工程, 2019, 47(12): 63-70.
[11] 许良, 黄双君, 回丽, 王磊, 周松, 赵晴. TB6钛合金疲劳小裂纹扩展行为[J]. 材料工程, 2019, 47(11): 171-177.
[12] 侯帅, 朱有利, 邱骥, 倪永恒. 喷丸强化对Ti6Al4V半椭圆表面裂纹J积分和裂纹扩展速率的影响[J]. 材料工程, 2019, 47(1): 139-146.
[13] 赵景云, BamberBLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[14] 章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
[15] 许良, 费昺强, 马少华, 回丽, 黄国栋. 湿热环境下复合材料层板拉-压性能[J]. 材料工程, 2018, 46(3): 124-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn