Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (1): 96-102    DOI: 10.11868/j.issn.1001-4381.2016.01.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
菱形加载路径下35CrMoA钢的微动疲劳行为
吕世泉1, 何国球1, 沈月1, 田丹丹1, 刘晓山1, 林国斌2, 任敬东2, 胡杰2
1. 同济大学材料科学与工程学院上海市金属功能材料开发应用重点实验室, 上海 201804;
2. 同济大学磁浮交通工程技术研究中心, 上海 201804
Fretting Fatigue Behavior of 35CrMoA Steel Under Diamond Loading Condition
LYU Shi-quan1, HE Guo-qiu1, SHEN Yue1, TIAN Dan-dan1, LIU Xiao-shan1, LIN Guo-bin2, REN Jing-dong2, HU Jie2
1. Shanghai Key Laboratory for R & D and Application of Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
2. Magnetic Suspension Traffic Engineering Technology Research Center, Tongji University, Shanghai 201804, China
全文: PDF(3324 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用MTS809拉扭复合疲劳试验机、扫描电镜(SEM)研究了接触应力为150MPa时35CrMoA合金钢在菱形加载路径下微动疲劳性能。结果表明:随着等效应力幅值的增加,材料的软化、硬化效果更加明显;剪应力-剪应变滞后回线的面积增大;裂纹萌生源区的面积减小,瞬断区面积与总断面面积的比例增加,瞬断区的撕裂也越严重。微动磨损使表面塑性枯竭,从而形成疲劳裂纹源。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕世泉
何国球
沈月
田丹丹
刘晓山
林国斌
任敬东
胡杰
关键词 35CrMoA菱形加载微动疲劳等效应力幅值断口形貌裂纹源    
Abstract:The stress controlled fretting fatigue behavior of 35CrMoA steel under the diamond loading condition was investigated at the contact stress of 150MPa by MTS809 axial/torsional test system and SEM. The results indicate that, with the increase of equivalent stress amplitude, the extent of softening and hardening becomes pronounced; the area of shear stress-strain hysteresis loop increases; the area of crack initiation decreases, the proportion of final fracture in fracture surface region increases, the degree of tearing becomes more serious. The plasticity is exhausted and easy to form crack initiation as a result of fretting wear.
Key words35CrMoA    diamond loading    fretting fatigue    equivalent stress amplitude    fracture morphology    crack initiation
收稿日期: 2015-04-20      出版日期: 2016-01-20
中图分类号:  TG142.1  
通讯作者: 何国球(1969-),男,教授,博士生导师,从事金属材料疲劳与失效研究,联系地址:上海市曹安公路4800号同济大学材料科学与工程学院(201804)     E-mail: gqhe@tongji.edu.cn
引用本文:   
吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
LYU Shi-quan, HE Guo-qiu, SHEN Yue, TIAN Dan-dan, LIU Xiao-shan, LIN Guo-bin, REN Jing-dong, HU Jie. Fretting Fatigue Behavior of 35CrMoA Steel Under Diamond Loading Condition. Journal of Materials Engineering, 2016, 44(1): 96-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.01.015      或      http://jme.biam.ac.cn/CN/Y2016/V44/I1/96
[1] PAPE J A, NEU R W. A comparative study of the fretting fatigue behavior of 4340 steel and PH 13-8 Mo stainless steel[J]. International Journal of Fatigue, 2007, 29(12):2219-2229.
[2] MADGE J J, LEEN S B, SHIPWAY P H. A combined wear and crack nucleation-propagation methodology for fretting fatigue prediction[J]. International Journal of Fatigue, 2008, 30(9):1509-1528.
[3] 周仲荣.关于微动磨损与微动疲劳的研究[J].中国机械工程, 2000, 11(10):1146-1150. ZHOU Zhong-rong. Research on fretting wear and fretting fatigue[J]. China Mechanical Engineering, 2000, 11(10):1146-1150.
[4] 沈明学,彭金方,郑健峰,等.微动疲劳研究进展[J].材料工程, 2010,(12):86-91. SHEN Ming-xue,PENG Jin-fang,ZHENG Jian-feng,et al.Study and development of fretting fatigue[J].Journal of Materials Engineering, 2010,(12):86-91.
[5] FERJAOUI A, YUE T, WAHAB M A, et al. Prediction of fretting fatigue crack initiation in double lap bolted joint using continuum damage mechanics[J]. International Journal of Fatigue, 2015,73:66-76.
[6] GINER E, SABSABI M, RODENAS J J, et al. Direction of crack propagation in a complete contact fretting-fatigue problem[J]. International Journal of Fatigue, 2014, 58(1):172-180.
[7] HILLS D A, NOWELL D. The development of a fretting fatigue experiment with well-defined characteristics[J]. Nasa Sti/recon Technical Report A, 1992, 93:69-84.
[8] IYER K. Peak contact pressure, cyclic stress amplitudes, contact semi-width and slip amplitude:relative effects on fretting fatigue life[J]. International Journal of Fatigue, 2001, 23(3):193-206.
[9] 宋川,刘建华,彭金方,等.接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J].材料工程,2014, (2):34-38. SONG Chuan, LIU Jian-hua, PENG Jin-fang, et al. Effect of contact stress on rotating bending fretting fatigue life of railway axle steel[J]. Journal of Materials Engineering, 2014, (2):34-38.
[10] WU G Q, LIU X L, LI H H, et al. Effect of contact pressure on fretting fatigue behavior of Ti-1023[J]. Wear, 2015,326-327:20-27.
[11] XUE F, WANG Z X, ZHAO W S, et al. Fretting fatigue crack analysis of the turbine blade from nuclear power plant[J]. Engineering Failure Analysis, 2014, 44(5):299-305.
[12] 杨洋,何国球,卢棋,等.轮轴钢35CrMoA单轴微动疲劳失效机理[J].金属功能材料, 2015,22(1):21-26. YANG Yang, HE Guo-qiu, LU Qi,et al. Uniaxial fretting fatigue properties of 35CrMoA[J]. Metallic Functional Materials, 2015,22(1):21-26.
[13] 曾庆祥,何国求,陈成澍.一种高强度钢的低周疲劳特性及其微观机理的研究[J].西南交通大学学报, 1999, 34(2):190-195. ZENG Qing-xiang, HE Guo-qiu, CHEN Cheng-shu. A study on the low-cycle fatigue characteristics and micro-mechanisms of a high-strength steel[J]. Journal of Southwest Jiaotong University,1999, 34(2):190-195.
[14] MCCARTHY O J, MCGARRY J P, LEEN S B. Microstructure-sensitive prediction and experimental validation of fretting fatigue[J]. Wear, 2013, 305(1-2):100-114.
[15] 刘道新,何家文.微动疲劳影响因素及钛合金微动疲劳行为[J].航空学报,2001,22(5):454-457. LIU Dao-xin, HE Jia-wen. Review of factors that influence fretting fatigue (FF) and investigation on FF behavior of Ti-alloy[J]. Acta Aeronautica et Astronautica Sinica,2001,22(5):454-457.
[16] 刘兵,何国球,蒋小松,等.轮轴钢LZ50的单轴微动疲劳失效机理[J].同济大学学报(自然科学版),2010,38(5):720-724. LIU Bing, HE Guo-qiu, JIANG Xiao-song, et al. Failure mechanism of single shaft fretting fatigue of LZ50[J]. Journal of Tongji University(Natural Science Edition), 2010,38(5):720-724.
[17] 庄厚川,宋起峰,董善举,等.汽车零部件微动损伤问题的研究[J].汽车工艺与材料,2015,(2):53-56. ZHUANG Hou-chuan,SONG Qi-feng,DONG Shan-ju,et al.Study on fretting damage of automobile parts[J].Automobile Technology & Material,2015,(2):53-56.
[1] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[2] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[3] 申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
[4] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[5] 张晓雯, 吴南, 张旋, 马丽婷, 厉蕾. 透明聚碳酸酯材料疲劳断裂行为[J]. 材料工程, 2017, 45(11): 30-35.
[6] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[7] 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11): 78-82.
[8] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[9] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[10] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
[11] 宋川, 刘建华, 彭金方, 张林, 周琰, 朱旻昊. 接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J]. 材料工程, 2014, 0(2): 34-38.
[12] 孔德军, 龙丹, 吴永忠, 叶存冬. X80管线钢埋弧焊接头冲击韧性及其断口形貌分析[J]. 材料工程, 2013, 0(6): 50-54.
[13] 严李李, 房现石, 梁永锋, 叶丰, 林均品. Fe-6.5%Si合金冷轧薄板的冲压性能[J]. 材料工程, 2012, 0(6): 28-31.
[14] 王强, 王欣, 高玉魁, 宋颖刚. 孔强化对TC18钛合金疲劳寿命的影响[J]. 材料工程, 2011, 0(2): 84-86.
[15] 陈邦峰, 贾泮江. ZL205A铝合金铸件偏析缺陷的断口形貌和化学成分[J]. 材料工程, 2010, 0(9): 1-6,24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn