Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (1): 108-114    DOI: 10.11868/j.issn.1001-4381.2016.01.017
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
2507双相不锈钢在NaClO溶液中的腐蚀性能
张艳1,*(), 李倩1, 王胜刚2
1 沈阳工业大学理学院, 沈阳 110870
2 中国科学院金属研究所, 沈阳 110016
Corrosion Resistance of 2507 Duplex Stainless Steel in NaClO Solution
Yan ZHANG1,*(), Qian LI1, Sheng-gang WANG2
1 School of Science, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2150 KB)   HTML ( 30 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用电化学动电位再活化法(EPR)、动电位极化和交流阻抗测试方法(EIS)研究2507双相不锈钢(SAF2507)在5g/L NaClO溶液中的晶间腐蚀和点腐蚀行为,并采用X射线光电子能谱(XPS)研究SAF2507腐蚀后表面形成的钝化膜组成。结果表明:SAF2507的再活化率Ra为0.68%,具有良好的耐晶间腐蚀性能;动电位极化和EIS的测试结果表明:SAF2507极化后能够发生自钝化现象,钝化区间为-0.5~0.6V;电荷传递电阻为1.389×104Ω·cm2,说明其具有较强的耐点腐蚀性能。XPS研究表明SAF2507在5g/L NaClO溶液中钝化膜主要成分为Cr,Fe等氧化物和氢氧型化合物。同时进一步探讨了SAF2507的腐蚀机理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张艳
李倩
王胜刚
关键词 2507双相不锈钢电化学测试晶间腐蚀点腐蚀钝化膜    
Abstract

Electrochemical potentiodynamic reactivation (EPR), potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS) methods were applied to investigate the intergranular corrosion and the pitting corrosion behaviors of 2507 duplex stainless steel (SAF2507), and the composition of the passive film formed on the corrosive surface of SAF2507 was studied by using the X-ray photoelectron spectrometer (XPS) analysis. The results show that the reactivation rate (Ra) of SAF2507 is 0.68%, which exhibits good intergranular corrosion resistance. The results of potentiodynamic polarization curve, and EIS show that the surface of SAF2507 can engender passivation phenomenon after polarization, the passivation range is -0.5-0.6V, and the charge transfer resistance is 1.389×104Ω·cm2, which shows better pitting corrosion resistance. XPS demonstrates that the composition of the passive film in 5g/L NaClO solution is mainly composed of oxides and hydrogen oxygen compounds of Cr and Fe. Meanwhile, the corrosion mechanism of SAF2507 was further explored.

Key words2507 duplex stainless steel    electrochemical test    intergranular corrosion    pitting corrosion    passive film
收稿日期: 2014-07-11      出版日期: 2016-01-20
基金资助:国家自然科学基金资助项目(51171199)
通讯作者: 张艳     E-mail: zhangy0909@126.com
作者简介: 张艳(1965-),女,博士,研究方向为材料的腐蚀与防护,联系地址:辽宁省沈阳市沈阳经济技术开发区沈辽西路111号沈阳工业大学理学院(110870)E-mail:zhangy0909@126.com
引用本文:   
张艳, 李倩, 王胜刚. 2507双相不锈钢在NaClO溶液中的腐蚀性能[J]. 材料工程, 2016, 44(1): 108-114.
Yan ZHANG, Qian LI, Sheng-gang WANG. Corrosion Resistance of 2507 Duplex Stainless Steel in NaClO Solution. Journal of Materials Engineering, 2016, 44(1): 108-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.01.017      或      http://jme.biam.ac.cn/CN/Y2016/V44/I1/108
Fig.1  2507双相不锈钢的显微金相组织
Fig.2  2507双相不锈钢的EPR曲线
Sample Ia/(mA·cm-2) Ir/(mA·cm-2) Ra/ %
1# 14 0.1 0.70
2# 15 0.1 0.67
3# 15 0.1 0.67
Table 1  2507双相不锈钢的EPR曲线参数
Fig.3  2507双相不锈钢在5g/L NaClO溶液中动电位极化曲线
Sample Icorr/(A·cm-2) Ecorr/V Eb/V
Base 2.963×10-5 -0.545 0.620
Table 2  2507双相不锈钢在5g/L NaClO溶液中电化学参数
Fig.4  2507双相不锈钢在5g/L NaClO溶液中Nyquist图
Fig.5  2507双相不锈钢在5g/L NaClO溶液中交流阻抗等效电路
Sample Rs/
(Ω·cm2)
Qf/
(S-n·Ω-1·cm-2)
n Rct/(Ω·cm2)
Base 2.813 3.81×10-5 0.9243 1.389×104
Table 3  2507双相不锈钢在5g/L NaClO溶液中的 交流阻抗等效电路拟合数据
Fig.6  2507双相不锈钢在5g/L NaClO溶液中的恒电位极化曲线
Fig.7  2507双相不锈钢在5g/L NaClO溶液中恒 电位480s后经Ar+溅射后的XPS全谱图
Fig.8  2507双相不锈钢在5g/L NaClO溶液中恒 电位480s后经Ar+溅射后O1s对应的XPS图谱
Fig.9  2507双相不锈钢在5g/L NaClO溶液中恒 电位480s后经Ar+溅射后Fe2p3/2对应的XPS图谱
Fig.10  2507双相不锈钢在5g/L NaClO溶液中恒 电位480s后经Ar+溅射后Cr2p3/2对应的XPS图谱
Fig.11  2507双相不锈钢在不同溶液中动电位极化曲线
Fig.12  2507双相不锈钢在不同溶液中Nyquist图
1 KRASNORUTSKYI S, PRIES H, ZINKE M, et al Metallurgical influence of multi-beam technology on duplex stainless steel welds[J]. Welding in the World, 2013, 57 (4): 487- 494.
2 CALLIARI I, PELLIZZARI M, ZANELLATO M, et al The phase stability in Cr-Ni and Cr-Mn duplex stainless steels[J]. Journal of Materials Science, 2011, 46 (21): 6916- 6924.
3 KOLENI Č I F, KOVAC D I L, DRIMAL D I D Effect of laser welding conditions on austenite/ferrite ratio in duplex stainless steel 2507 welds[J]. Welding in the World, 2011, 55 (5): 19- 25.
4 WANG X, CHEN W, ZHENG H Influence of isothermal aging on σ precipitation in super duplex stainless steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17 (4): 435- 440.
5 CHEN X, REN X, XU H, et al Effect of super plastic deformation on the bonding property of 00Cr25Ni7Mo3N duplex stainless steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19 (4): 317- 321.
6 徐菊良, 邓博, 孙涛, 等 DL-EPR法评价2205双相不锈钢晶间腐蚀敏感性[J]. 金属学报, 2010, 46 (3): 380- 384.
6 XU Ju-liang, DENG Bo, SUN Tao, et al Evaluation of the susceptibility to intergranular attack of 2205 duplex stainless steel by DL-EPR method[J]. Acta Metallurgica Sinica, 2010, 46 (3): 380- 384.
7 郭丽芳, 李旭晏, 孙涛, 等 敏化温度对SAF2304双相不锈钢耐晶间腐蚀性能的影响[J]. 金属学报, 2012, 48 (12): 1503- 1509.
7 GUO Li-fang, LI Xu-yan, SUN Tao, et al The influence of sensitive temperature on the localized corrosion resistance of duplex stainless steel SAF2304[J]. Acta Metallurgica Sinica, 2012, 48 (12): 1503- 1509.
8 DONG C F, LUO H, XIAO K, et al Effect of temperature and Cl- concentration on pitting of 2205 duplex stainless steel[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26 (4): 641- 647.
9 YANG Y H, YAN B, YIN J L, et al Microstructure and corrosion behavior aging at 750℃ in 25% Cr duplex stainless steel[J]. Rare Metals, 2011, 30 (9): 515- 519.
10 DABALÃ M, CALLIARA I, VARIOLA A Corrosion behavior of a super duplex stainless steel in chloride aqueous solution[J]. Journal of Materials Engineering and Performance, 2004, 13 (2): 237- 240.
11 赵钧良, 张人德 00Cr24Ni6Mo2N双相不锈钢耐腐蚀性能分析[J]. 腐蚀与防护, 2005, 26 (3): 105- 107.
11 ZHAO Jun-liang, ZHANG Ren-de Corrosion resistance of 00Cr24Ni6Mo2N duplex stainless steel[J]. Corrosion & Protection, 2005, 26 (3): 105- 107.
12 张敏, 张恩华, 孟强, 等 腐蚀介质对双相不锈钢2205腐蚀性能影响的研究[J]. 兵器材料科学与工程, 2011, 34 (6): 40- 43.
12 ZHANG Min, ZHANG En-hua, MENG Qiang, et al Effect of corrosive medium on the corrosion resistance of duplex stainless steel[J]. Ordnance Material Science and Engineering, 2011, 34 (6): 40- 43.
13 YOUSEFIEH M, SHAMANIAN M, SAATCHI A Influence of step annealing temperature on the microstructure and pitting corrosion resistance of SDSS UNS S32760 welds[J]. Journal of Materials Engineering and Performance, 2011, 20 (9): 1678- 1683.
14 YONG T S, SHIN H S, LEE H W Effects of heat input on pitting corrosion in super duplex stainless steel weld metals[J]. Metals and Materials International, 2012, 18 (6): 1037- 1040.
15 DONIKČ, KOCIJAN A, MANDRINO D, et al X-ray photoelectron spectroscopy depth profiling of electrochemically prepared thin oxide layers on duplex stainless steel[J]. Metallurgical and Materials Transactions B, 2011, 42 (5): 1044- 1050.
16 向红亮, 何福善, 刘东 超级双相不锈铸钢电化学极化表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2010, 30 (4): 288- 294.
16 XIANG Hong-liang, HE Fu-shan, LIU Dong Corrosion compositions on surface after electrochemical polarization of duplex stainless cast steel by XPS[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30 (4): 288- 294.
17 GAO Z, CHEN F, ZHAO C Comparing different criteria of EPR method to evaluate the susceptibility to intergranular corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2000, 20 (4): 247- 251.
18 李神速 双回路EPR法测定奥氏体不锈钢的敏化[J]. 腐蚀科学与防护技术, 2000, 12 (5): 288- 291.
18 LI Shen-su Examination of sensitization of austenitic stainless steels by double-loop EPR test method[J]. Corrosion Science and Protection Technology, 2000, 12 (5): 288- 291.
19 HONG J F, HAN D, TAN H, et al Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion by optimized double loop electrochemical potentiokinetic reactivation method[J]. Corrosion Science, 2013, 68, 249- 255.
20 陈海燕, 林振龙, 陈丕茂, 等 紫铜在海洋微生物作用下的电化学腐蚀行为[J]. 材料工程, 2014, (7): 22- 27.
20 CHEN Hai-yan, LIN Zhen-long, CHEN Pi-mao, et al Electrochemical corrosion behavior of copper in marine microbial medium[J]. Journal of Materials Engineering, 2014, (7): 22- 27.
21 曾洪涛, 向嵩, 刘松林, 等 904L不锈钢在氢氟酸和浓硫酸混合液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33 (3): 182- 187.
21 ZENG Hong-tao, XIANG Song, LIU Song-lin, et al Corrosion behaviors of 904L austenite stainless steel in concentrated sulfuric acid containing hydrofluoric acid[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33 (3): 182- 187.
22 SÁNCHEZ M, GREGORI J, ALONSO C, et al Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores[J]. Electrochimica Acta, 2007, 52 (27): 7634- 7641.
23 El-EGAMY S S, BADAWAY W A Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions[J]. Journal of Applied Electrochemistry, 2004, 34 (11): 1153- 1158.
24 杜楠, 叶超, 田文明, 等 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, (6): 68- 73.
24 DU Nan, YE Chao, TIAN Wen-ming, et al 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy[J]. Journal of Materials Engineering, 2014, (6): 68- 73.
25 王周成, 张瀛洲, 周绍民, 等 离子选择性涂层下碳钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2001, 21 (5): 273- 279.
25 WANG Zhou-cheng, ZHANG Ying-zhou, ZHOU Shao-min, et al Corrosion compositions of carbon steel under ion-selective coatings by XPS[J]. Journal of Chinese Society for Corrosion and Protection, 2001, 21 (5): 273- 279.
[1] 高杰明, 黄晖, 石薇, 魏午, 文胜平, 韩颖, 聂祚仁. 退火处理对含铒Al-Mg-Zn合金组织和性能的影响[J]. 材料工程, 2022, 50(11): 101-108.
[2] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[3] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[4] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[5] 成明, 杨继凯, 郝志旭, 亢嘉琪, 王新, 王国政, 宦克为. TiO2基底对MoO3/TiO2复合薄膜电致变色性能的影响[J]. 材料工程, 2020, 48(10): 163-168.
[6] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[7] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[8] 李桐, 张林睿, 杨炎翰, 张永哲, 宋雪梅, 汪浩, 严辉. 铜锌锡硫薄膜太阳能电池吸收层的银掺杂[J]. 材料工程, 2018, 46(12): 95-100.
[9] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[10] 刘铭, 李惠曲, 陈军洲, 李国爱, 陈高红. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45(9): 129-135.
[11] 侯天宇, 李萍, 陈雷, 赵杰, 李廷举. 304奥氏体不锈钢晶间腐蚀敏感性的非线性超声表征[J]. 材料工程, 2017, 45(10): 132-137.
[12] 刘晓艳, 王召朋, 龙亮, 张喜亮, 崔好选, 高飞. Mg与Ag含量对Al-Cu-Mg-Ag新型耐热铝合金晶间腐蚀性能的影响[J]. 材料工程, 2016, 44(9): 68-75.
[13] 王国材, 肖小波, 陈艳萍, 王晨. Ce68Al10Cu20Nb2大块非晶表面钝化膜的研究[J]. 材料工程, 2016, 44(5): 72-78.
[14] 王晶, 尚新春, 路民旭, 张雷. 316L不锈钢在不同环境中点蚀形核研究[J]. 材料工程, 2015, 43(9): 12-18.
[15] 何正林, 高文理, 陆政, 冯朝辉. 热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015, 43(8): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn