Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 8-16    DOI: 10.11868/j.issn.1001-4381.2016.02.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响
王丹军, 申会东, 郭莉, 张洁, 付峰
延安大学 化学与化工学院 陕西省化学反应工程 重点实验室, 陕西 延安 716000
Synthesis of Three-dimensional Mesoporous Bi2WO6 Photocatalyst and Effect of Inorganic Ion on Its Photocatalytic Activity
WANG Dan-jun, SHEN Hui-dong, GUO Li, ZHANG Jie, FU Feng
Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China
全文: PDF(5097 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以硝酸铋、钨酸铵为起始原料,采用水热法合成介孔Bi2WO6光催化剂,借助X射线粉末衍射(XRD)、固体紫外-可见吸收光谱(UV-Vis)、电子扫描电镜(FE-SEM)和透射电镜(TEM)对催化剂的物相组成、形貌和光吸收特性进行表征,并推测三维球状介孔Bi2WO6的形成机理;研究溶液pH值和环境水体中常见无机离子对Bi2WO6光催化降解亚甲基蓝的影响。结果表明:在强酸条件下,Bi2WO6表现出更高的光催化活性;环境水体中的无机离子对亚甲基蓝的光催化降解影响显著,阳离子如Fe3+,NH4+以及阴离子如卤素离子对其光催化降解具有很强的促进作用,Cu2+和NO2-几乎无影响,而Fe2+对其则具有明显抑制作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丹军
申会东
郭莉
张洁
付峰
关键词 水热法Bi2WO6光催化活性无机离子    
Abstract:Using bismuth nitrate and ammonium tungstate as raw materials, mesoporous bismuth tungstates(Bi2WO6) were synthesized by a facile hydrothermal process. The phase composition, structure, optical absorption properties and morphology of Bi2WO6 photocatalyst were characterized by XRD, UV-Vis, FE-SEM and TEM, the forming mechanism of three-dimensional spherical mesoporous Bi2WO6 was speculated. The effect of solution's pH value and common inorganic ions in the natural water on the mesoporous Bi2WO6 photocatalytic activity was also studied. The experimental result of methyl-blue(MB) photocatalytic degradation show that the mesoporous Bi2WO6 exhibits better photocatalytic activity in the strong acidic solution. Furthermore, investigation reveals that common inorganic ions have obvious influence on the photocatalytic degradation of methyl-blue. Cation, such as NH4+ and Fe3+, and anion, such as Cl-, Br- and I-, can obviously promote the degradation of methyl-blue. Cu2+ and NO2- have nearly no effect on it. While, Fe2+ can clearly inhibit the degradation of methyl-blue.
Key wordshydrothermal method    Bi2WO6    photocatalytic activity    inorganic ion
收稿日期: 2014-11-15      出版日期: 2016-02-22
中图分类号:  O614.41  
通讯作者: 王丹军(1976-),男,博士,副教授,主要从事半导体催化材料的制备与性能研究,联系地址:陕西省延安市宝塔区圣地路580号延安大学化学与化工学院(716000),E-mail:wangdj761118@163.com     E-mail: wangdj761118@163.com
引用本文:   
王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
WANG Dan-jun, SHEN Hui-dong, GUO Li, ZHANG Jie, FU Feng. Synthesis of Three-dimensional Mesoporous Bi2WO6 Photocatalyst and Effect of Inorganic Ion on Its Photocatalytic Activity. Journal of Materials Engineering, 2016, 44(2): 8-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.002      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/8
[1] 吴祖望, 杨威. 21世纪20年代我国的染料工业与染料学科展望[J].染料与染色, 2007,44(1):1-4. WU Zu-wang, YANG Wei. A prospect for dyestuff industry and dyestuff science in China in 2020'[J].Dyestuff and Coloration, 2007,44(1):1-4.
[2] 赵荣祥, 李秀萍, 徐铸德. 离子液体辅助水热合成数值状硫化镉及光催化性能[J]. 材料工程, 2014,(2):7-12. ZHAO Rong-xiang, LI Xiu-ping, XU Zhu-de. Synthesis and photocatalytic performance of dendritic CdS nanostructures by and ionic liquid-assisted hydrothermal route[J]. Journal of Materials Engineering, 2014,(2):7-12.
[3] 杨丽丽, 都玲, 于杨, 等. 磷酸处理HZSM-5负载TiO2光催化降解活性艳红X-3B[J]. 材料工程, 2014,(9):94-99. YANG Li-li, DU Ling, YU Yang, et al. Photocatalytic degradation of reactive Brilliant red X-3B on TiO2supported on HZSM-5 with phosphoric acid[J]. Journal of Materials Engineering, 2014,(9):94-99.
[4] NAGIRNYI V, KIRM M, KOTLOV A, et al. Separation of excitonic and electron-hole process in metal tungstates[J]. Journal of Luminescence, 2003, 102(3):597-603.
[5] KATO H, MATSUDO N, KUDO A. Photophysical and photocatalytic properties of molybdates and tungstates with a scheelite structure[J]. Chemistry Letters, 2004, 33(9):1216-1217.
[6] ZHAO X, YAO W Q, ZHU Y F, et al. Fabrication and photoelectrochemical properties of porous ZnWO4 film[J]. Journal of Solid State Chemistry, 2006, 179(11):2562-2570.
[7] WU Y, ZHANG S C, ZHU Y F, et al. Photocatalytic activity of nanosized ZnWO4 prepared by the sol-gel method[J].Chemical Research in Chinese Universities, 2007, 23(4):465-468.
[8] TANG J W, ZOU Z G, YE J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J].Catalysis Letters, 2004, 92(2):53-56.
[9] XU C X, WEI X, GUO Y M, et al. Surfactant-free synthesis of Bi2WO6 multilayered disks with visible-light-induced photocatalytic activity[J]. Materials Research Bulletin, 2009, 44(8):1635-1641.
[10] TIAN Y, HUA G M, XU W, et al. Bismuth tungstate nano/microstructures:controllable morphologies, growth mechanism and photocatalytic properties[J]. Journal of Alloys Compounds, 2011, 509(3):724-730.
[11] ZHANG G K, LU F, LI M, et al. Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic acitvity for degradation of 4BS[J]. Journal of Physical and Chemical of Solids, 2010, 71(4):579-582.
[12] ALFARO O, MARTINEZ-DE C A. Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by Co-precipitation method[J]. Applied Catalysis A:General, 2010, 383(1):128-133.
[13] HUANG Y, AI Z H, HO W K, et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO[J]. The Journal of Physical Chemistry C, 2010, 114(14):6342-6349.
[14] ZHANG C, ZHU Y F. Synthesis of square Bi2WO6 nanoplates as high activity visible-light-driven photocatalysts[J].Chemistry of Materials, 2005, 17(13):3537-3545.
[15] SHANG M, WANG W Z, SUN S M, et al. Bi2WO6 nanocrystals with high photocatlaytic activities under visible light[J]. The Journal of Physical Chemistry C, 2008, 112(28):10407-10411.
[16] ZHANG L S, WANG W Z, ZHOU L, et al. Bi2WO6 nano-and microstructures:shape control and associated visible-light driven photocatalytic activities[J]. Small, 2007, 3(9):1618-1625.
[17] WANG D J, ZHEN Y Z, XUE G L, et al. Synthesis of mesoporous Bi2WO6 architectures and their gas sensitivity to ethanol[J]. Journal of Materials Chemistry C, 2013, 1(26):4153-4162.
[18] WANG D J, XUE G L, ZHEN Y Z, et al. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities[J]. Journal of Materials Chemistry, 2012, 22(11):4751-4758.
[19] WANG D J, GUO L, ZHEN Y Z, et al. AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue[J]. Journal of Materials Chemistry A, 2014, 2(30):11716-11727.
[20] WANG D J, YUE L L, GUO L, et al. Synthesis and enhanced photocatalytic mechanism of Fe3+ doped three-dimensional Bi2WO6hierarchical nanoarchitectures[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(4):961-968.
[21] ZHANG L S, WANG W Z, CHEN Z G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts[J]. Journal of Materials Chemistry, 2007,17(24):2526-2532.
[22] MA D K, HUANG S M, CHEN W X, et al. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates:controlled synthesis, photocatalytic activities, and wettability[J]. The Journal of Physical Chemistry C, 2009, 113(11):4369-4374.
[23] LI Y Y, LIU J P, HUANG X T, et al. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres[J].Crystal Growth & Design, 2007, 7(7):1350-1355.
[24] WANG C Y, ZHANG H, LI F, et al. Degradation and mineralization of Bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation[J]. Environmental Science and Technology, 2010, 44(17):6843-6848.
[25] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4):603-619.
[26] HONG S S, LEE M S, PARK S S, et al. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol[J]. Catalysis Today, 2003, 87(1-4):99-105.
[27] TRIFIRO F, HOSER H, SCARLE R D. Relationship between structure and activity of mixed oxides as oxidation catalysts[J]. Journal of Catalysis, 1972, 25(1):12-24.
[28] CARRAZAN S R G, MARTIN C, RIVES V, et al. An FT-IR spectroscopy study of the adsorption and oxidation of propene on multiphase Bi, Mo and Co catalysts[J]. Spectrochimica Acta Part A:Molecular and Biomelcular Spectroscopy, 1996, 52(9):1107-1118.
[29] 王丹军, 李东升, 郭莉, 等. 球形α-Fe2O3纳米粉体的超声水解法合成与表征[J].无机化学学报, 2006, 22(7):1317-1319. WANG Dan-jun, LI Dong-sheng, GUO Li, et al. Synthesis and characterization of spherical hematite(α-Fe2O3) nanopowder by sonochemical hydrolysis method[J].Chinese Journal of Inorganic Chemistry, 2006, 22(7):1317-1319.
[30] REN J, WANG W Z, SUN S M, et al. Enhance photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation[J]. Applied Catalysis B:Environmental, 2009, 92(1-2):50-55.
[31] 吕学军, 许宜铭,王智,等. Fe(Ш)参与TiO2光催化降解X3B的反应机理研究[J].化学学报, 2004, 62(16):1455-1459. LU Xue-jun, XU Yi-ming, WANG Zhi, et al. Reaction mechanism of Fe(Ⅲ) participated photocatalytic degradation of X3B over TiO2[J]. Acta Chmica Sinca, 2004, 62(16):1455-1459.
[32] 刘祥虎. 金属离子与染料分子相互作用对染料分子催化降解的影响[D].上海:同济大学, 2008. LIU Xiang-hu. Metal ions interact with dye molecules and its effect on the catalytic degradation of dye molecules[D]. Shanghai:Tongji University, 2008.
[33] 白图雅. 无机阴离子对光催化降解有机染料的影响研究[D].呼和浩特:内蒙古大学, 2007. BAI Tu-ya. Investigation of the influence of inorganic anion on photocatalytic degradation of organic dye[D]. Hohhot:Inner Mongolia University, 2007.
[34] 王新颖. 亚硝酸根对水中4-氯酚光降解的影响[D]. 大连:大连理工大学, 2011. WANG Xin-ying. Effect of on photo-degradation of 4-chlorophenol[D]. Dalian:Dalian University of Technology, 2011.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[3] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[4] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[5] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[6] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[7] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[8] 李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
[9] 郭莉, 张开来, 张鑫, 赵芳丽, 赵强, 杨晓, 王丹军, 付峰. g-C3N4量子点修饰球形Bi2WO6及其光催化活性增强机制[J]. 材料工程, 2019, 47(11): 128-134.
[10] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[11] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[12] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
[13] 齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
[14] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[15] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn