Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 28-34    DOI: 10.11868/j.issn.1001-4381.2016.02.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
超声波振动下SiC陶瓷颗粒与Zn-Al液态合金的相互作用机制
张洋1, 宋博瀚1, 闫久春2
1. 石家庄铁道大学 河北省交通工程材料重点实验室, 石家庄 050043;
2. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001
Interaction Mechanism Between SiC Ceramic Particles and Liquid Zn-Al Alloy Under Ultrasonic Vibration
ZHANG Yang1, SONG Bo-han1, YAN Jiu-chun2
1. Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(2804 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用半固态机械搅拌结合超声波振动过程制备了SiC颗粒增强的Zn-Al合金复合材料,研究了超声波作用下SiC陶瓷颗粒与液态Zn-Al合金的相互作用机制。结果表明,超声波作用在Zn基复合材料上可以在液态Zn-Al合金内产生强烈的空化作用,空化作用可以破坏Zn-Al合金表面的氧化物及陶瓷颗粒表面吸附的气膜,使Zn-Al合金润湿裸露的SiC陶瓷颗粒表面并形成冶金结合。在超声振动下,SiC颗粒与Zn-Al合金界面非常平直且洁净,没有孔洞存在,是一种润湿型结合界面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洋
宋博瀚
闫久春
关键词 超声波振动SiC/Zn-Al复合材料润湿机制微观结构    
Abstract:Zn-Al alloy composites reinforced with SiC particles were prepared by combining semi-solid mechanical stirring with ultrasonic vibration process. Interaction between SiC ceramic particles and liquid Zn-Al alloy with aid of ultrasonic vibration was investigated. The results show that ultrasonic vibration imposed on the Zn-based composites can cause high cavitation intensity in the liquid Zn-Al alloy which disrupts surface oxides on the Zn-Al alloy and gas films adsorbed on the particles, thereby allowing the Zn-Al alloy to wet the bare SiC ceramic particles surface and form a metallurgical bond. The interface between SiC particles and Zn-Al alloy is rather plane and clean with no voids. Which mean that a wet-type bonding interface forms between SiC particles and Zn-Al alloy under ultrasonic vibration.
Key wordsultrasonic vibration    SiC/Zn-Al composite    wetting mechanism    microstructure
收稿日期: 2014-09-04      出版日期: 2016-02-22
中图分类号:  TG456.9  
通讯作者: 张洋(1980-),女,博士,主要从事金属基复合材料的焊接研究,联系地址:河北省石家庄市北二环东路17号石家庄铁道大学材料学院(050043),E-mail:zhangyanghit@163.com     E-mail: zhangyanghit@163.com
引用本文:   
张洋, 宋博瀚, 闫久春. 超声波振动下SiC陶瓷颗粒与Zn-Al液态合金的相互作用机制[J]. 材料工程, 2016, 44(2): 28-34.
ZHANG Yang, SONG Bo-han, YAN Jiu-chun. Interaction Mechanism Between SiC Ceramic Particles and Liquid Zn-Al Alloy Under Ultrasonic Vibration. Journal of Materials Engineering, 2016, 44(2): 28-34.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.005      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/28
[1] 张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, 29(4):1-7. ZHANG D, ZHANG G D, LI Z Q. The current state and trend of metal matrix composites[J]. Materials China, 2010, 29(4):1-7.
[2] LLOYD D J. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews, 1994, 39(1):1-23.
[3] 熊华平, 毛建英, 陈冰清, 等. 航空航天轻质高温结构材料的焊接技术研究进展[J]. 材料工程, 2013,(10):1-12. XIONG H P, MAO J Y, CHEN B Q, et al. Research advances on the welding and joining technologies of light-mass high-temperature structural materials in aerospace field[J]. Journal of Materials Engineering, 2013,(10):1-12.
[4] WANG X H, NIU J T, GUAN S K, et al. Investigation on TIG welding of SiCp-reinforced aluminum-matrix composite using mixed shielding gas and Al-Si filler[J]. Materials Science and Engineering:A, 2009, 499(1-2):106-110.
[5] GUO J, GOUGEON P, CHEN X G. Study on laser welding of AA1100-16vol% B4C metal-matrix composites[J]. Composites:Part B, 2012, 43(5):2400-2408.
[6] NAMI H, HALVAEE A, ADGI H, et al. Microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix in situ composite[J]. Materials and Design, 2010, 31(8):3908-3914.
[7] MAITY J, PAL T K. Transient liquid-phase diffusion bonding of aluminum metal matrix composites using a mixed Cu-Ni powder interlayer[J]. Journal of Materials Engineering and Performance, 2012, 21(7):1232-1242.
[8] CAM G. Fiction stir welded structural materials:beyond Al-alloys[J]. International Materials Reviews, 2011, 56(1):1-48.
[9] GUO J F, GOUGEON P, CHEN X G. Characterisation of welded joints produced by FSW in AA 1100-B4C metal matrix composites[J]. Science and Technology of Welding and Joining, 2012, 17(2):85-91.
[10] 冯涛, 郁振其, 韩洋, 等. SiCp/2024Al铝基复合材料搅拌摩擦焊接头微观组织[J]. 航空材料学报, 2013,33(4):27-31. FENG T, YU Z Q, HAN Y, et al. Friction stir welding microstructure of SiCp/2024 Al MMC[J]. Journal of Aeronautical Materials, 2013, 33(4):27-31.
[11] TRACIE P. Solid-state joining of metal matrix composites:a survey of challenges and potential solutions[J]. Materials and Manufacturing Processes, 2011, 26(4):636-648.
[12] LU J B, MU Y C, LUO X W, et al. A new method for soldering particle-reinforced aluminum metal matrix composites[J]. Materials Science and Engineering:B, 2012, 177(20):1759-1763.
[13] XU H B, XING Q X, ZENG Y L, et al. Semisolid stirring brazing of SiCp/A356 composites with Zn27Al filler metal in air[J]. Science and Technology of Welding and Joining, 2011, 16(6):483-487.
[14] XU Z W, YAN J C, ZHANG B Y, et al. Behaviors of oxide film at the ultrasonic aided interaction interface of Zn-Al alloy and Al2O3p/6061Al composites in air[J]. Materials Science and Engineering:A, 2006, 415(1-2):80-86.
[15] ZHANG Y, YAN J C, WU Q. Ultrasonic brazing of high fraction volume of SiC particulate reinforced aluminium matrix composites[J]. Materials Science and Technology, 2009, 25(3):379-382.
[16] 丁文江, 徐小平, 邓祖成. SiC颗粒真空处理对铸造铝基复合材料制备过程的影响[J]. 中国有色金属学报, 1993, 3(3):52-53. DING W J, XU X P, DENG Z C. Influences of vacuum-baking treatment to SiC particulates on preparing Al-matrix composites[J]. Transactions of Nonferrous Metals Society of China, 1993, 3(3):52-53.
[17] 潘蕾, 陶杰, 陈照峰, 等. 高能超声在颗粒/金属熔体体系中的声学效应[J]. 材料工程, 2006,(1):35-42. PAN L, TAO J, CHEN Z F, et al. Acoustic effect of high intensity ultrasonic in particles/metal melt[J]. Journal of Materials Engineering, 2006,(1):35-42.
[1] 蒋少松, 杨天豪, 孙宏宇, 何玉石, 卢振, 王瑞卓. 超声波振动对钛箔拉伸性能及位错分布的影响[J]. 材料工程, 2019, 47(2): 84-89.
[2] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[3] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[4] 刘红娟, 谢水波, 张希晨, 刘迎九, 曾涛涛. 氧化石墨烯复合材料吸附铀的研究进展[J]. 材料工程, 2018, 46(5): 11-21.
[5] 申造宇, 黄光宏, 何利民, 牟仁德, 李建平. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能[J]. 材料工程, 2018, 46(5): 72-78.
[6] 马良来, 高乐, 胡建宝, 乔振杰, 董绍明. 温度对CVD法在纤维表面制备BN涂层的影响[J]. 材料工程, 2018, 46(4): 31-37.
[7] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[8] 郭瑞华, 李振亮, 李慧琴, 樊易, 刘玉乾. 热处理对Mg-5Sm-0.6Zn-0.5Zr合金微观结构与力学性能的影响[J]. 材料工程, 2018, 46(11): 125-133.
[9] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[10] 陈红梅, 祝玉林, 王松. 后热处理对Cf/ZrC复合材料微观结构及性能的影响[J]. 材料工程, 2017, 45(8): 43-48.
[11] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[12] 郗旸, 张淇萱, 李才巨, 谭军, 朱心昆, 王刚, 易健宏. Mo离子注入对纯铜表面纳米层稳定性的影响[J]. 材料工程, 2016, 44(8): 40-45.
[13] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[14] 刘皓, 李克智. C/C复合材料不同基体炭的微观结构[J]. 材料工程, 2016, 44(7): 7-12.
[15] 吕生华, 朱琳琳, 李莹, 贺亚亚, 杨文强. 氧化石墨烯复合材料的研究现状及进展[J]. 材料工程, 2016, 44(12): 107-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn