Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 88-93    DOI: 10.11868/j.issn.1001-4381.2016.02.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
直接时效对GH4169合金应力集中敏感性的影响
谢孝昌, 李旭东, 汤春峰, 付书红
北京航空材料研究院, 北京 100095
Effect of Direct Aging on Stress Concentration Sensitivity of GH4169 Superalloy
XIE Xiao-chang, LI Xu-dong, TANG Chun-feng, FU Shu-hong
Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2839 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以直接时效态(DA)GH4169合金为研究对象,通过旋转弯曲疲劳实验,分别研究该合金在650℃和室温大气状态下,应力集中系数分别为Kt=1,Kt=3,Kt=4时的疲劳极限。结果表明,直接时效态GH4169合金在高温650℃和室温状态下,均具有很强的应力集中敏感性,650℃时的疲劳极限,Kt=4较Kt=1下降了68%;室温时的疲劳极限,Kt=4较Kt=1下降了66%。同时,直接时效态GH4169合金在室温条件下,疲劳极限较650℃显著降低,室温较650℃时的疲劳极限在Kt=1时下降了32%,Kt=3时下降了30%,Kt=4时下降了28%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢孝昌
李旭东
汤春峰
付书红
关键词 直接时效GH4169旋转弯曲疲劳应力集中敏感疲劳极限    
Abstract:Through rotating bending fatigue test carried out in air condition, the fatigue limit of DAGH4169 superalloy with three different stress concentration sensitivity coefficients(Kt=1, Kt=3 and Kt=4) at room temperature and at 650℃ was studied. The research results indicate that the DAGH4169 superalloy is severely sensitive to the stress concentration both at room temperature and at 650℃. When it is at 650℃, the fatigue limit of DAGH4169 superalloy with stress concentration sensitivity coefficient Kt=4 decreases by 68% compared with Kt=1, and the fatigue limit decreases by 66% at room temperature. Meanwhile, the fatigue limit of the DAGH4169 superalloy is obviously lower at room temperature than at 650℃. When Kt=1, the fatigue limit at room temperature decreases by 32% compared with at 650℃, and the fatigue limit decreases by 30%, when Kt=3, and the fatigue limit decreases by 28%, when Kt=4.
Key wordsdirect aging    GH4169    rotating bending fatigue    stress concentration sensitivity    fatigue limit
收稿日期: 2015-06-09      出版日期: 2016-02-22
中图分类号:  TG113.25  
通讯作者: 谢孝昌(1984-),男,工程师,主要从事金属材料热处理工艺及组织与性能研究,联系地址:北京市81信箱56分箱(100095),E-mail:xxc127@163.com     E-mail: xxc127@163.com
引用本文:   
谢孝昌, 李旭东, 汤春峰, 付书红. 直接时效对GH4169合金应力集中敏感性的影响[J]. 材料工程, 2016, 44(2): 88-93.
XIE Xiao-chang, LI Xu-dong, TANG Chun-feng, FU Shu-hong. Effect of Direct Aging on Stress Concentration Sensitivity of GH4169 Superalloy. Journal of Materials Engineering, 2016, 44(2): 88-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.014      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/88
[1] 李嘉荣, 熊继春, 唐定中, 等. 先进高温结构材料与技术(下)[M]. 北京:国防工业出版社, 2012.
[2] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012,(8):92-100. QI Huan. Review of INCONEL 718 alloy:its history, properties, processing and developing substitutes[J]. Journal of Materials Engineering, 2012,(8):92-100.
[3] 明宪良, 陈静, 谭华, 等. 激光立体成形GH4169高温合金γ″相的高温粗化行为[J]. 材料工程, 2014,(8):8-14. MING Xian-liang, CHEN Jing, TAN Hua, et al. Coarsening behavior of γ″ precipitates in GH4169 superalloy fabricated by laser solid forming[J]. Journal of Materials Engineering, 2014,(8):8-14.
[4] 赵振业. 高强度合金应用与抗疲劳制造[J]. 功能材料信息, 2009, 6(2):16-20. ZHAO Zhen-ye. Application of high strength alloys and improvement on fatigue behavior[J]. Functional Materials Information, 2009, 6(2):16-20.
[5] 赵振业. 高强度合金抗疲劳应用技术研究与发展[J]. 中国工程科学, 2005,(3):90-94. ZHAO Zhen-ye. Investigation and development status of the application technology to improve fatigue behavior of high strength alloys[J]. Engineering Sciences, 2005,(3):90-94.
[6] 王中光. 材料的疲劳[M]. 北京:国防工业出版社, 1999.
[7] 魏振伟, 刘昌奎, 顾玉丽, 等. GH536镍基高温合金焊接接头力学性能与断裂特征研究[J]. 航空材料学报, 2015, 35(5):70-74. WEI Zhen-wei,LIU Chang-kui,GU Yu-li,et al.Mechanical properties and fracture characteristics of welded joint in GH536 Ni-based superalloy[J].Journal of Aeronautical Materials,2015,35(5):70-74.
[8] 黄嘉, 季英萍, 秦丽晔, 等. GH4169合金惯性摩擦焊焊接接头疲劳裂纹扩展性能[J]. 航空材料学报, 2013, 33(6):45-50. HUANG Jia, JI Ying-ping, QIN Li-ye, et al. Fatigue crack growth behavior of inertia friction welded joints of GH4169 alloy[J]. Journal of Aeronautical Materials, 2013, 33(6):45-50.
[9] 张丽, 吴学仁. 基于小裂纹理论的GH4169高温合金的疲劳全寿命预测[J]. 航空材料学报, 2014, 34(6):75-83. ZHANG Li, WU Xue-ren. Fatigue-life prediction method based on small-crack theory in GH4169 superalloy[J]. Journal of Aeronautical Materials, 2014, 34(6):75-83.
[10] 王建国, 王红缨, 康永林, 等. GH4169合金高温多轴疲劳断口形貌分析[J]. 实验室研究与探索, 2007, 26(10):183-188. WANG Jian-guo, WANG Hong-ying, KANG Yong-lin, et al. Multiaxial fatigue fracture analysis of GH4169 superalloy at high temperature[J]. Research and Exploration in Laboratory,2007,26(10):183-188.
[11] SHANG D G, SUN G Q, CHEN J H, et al. Multiaxial fatigue behavior of Ni-based superalloy GH4169 at 650℃[J]. Materials Science and Engineering:A, 2006, 432:231-238.
[12] GUSTAFSSON D, LUNDSTROM E, SIMONSSON K. Modelling of high temperature fatigue crack growth in Inconel 718 under hold time conditions[J]. International Journal of Fatigue, 2013, 52:124-130.
[13] OSINKOLU GA, ONOFRIO G. Fatigue crack growth in polycrystalline IN 718 superalloy[J]. Materials Science and Engineering:A, 2003, 356:425-433.
[14] ANDERSSON H, PERSSON C. In-situ SEM study of fatigue crack growth behaviour in IN718[J]. International Journal of Fatigue, 2004, 26:211-219.
[15] JEONG D H, CHOI M J, GOTO M, et al. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures[J]. Materials Characterization, 2014, 95:232-244.
[16] 尚德广, 陈建华, 孙国芹, 等. 单、多轴混合加载下GH4169合金的高温疲劳特性[J]. 金属学报, 2005, 41(8):785-790. SHANG De-guang, CHEN Jian-hua, SUN Guo-qin, et al. Fatigue characteristics for GH4169 superalloy under uniaxial/multiaxial loading at high temperature[J]. Acta Metallurgica Sinica, 2005, 41(8):785-790.
[17] 韩增祥. 温度对变形高温合金热疲劳性能的影响[J]. 燃气涡轮实验与研究, 2007, 20(4):53-57. HAN Zeng-xiang. Effects of temperature on thermal fatigue properties of some wrought superalloys[J]. Gas Turbine Experiment and Research, 2007, 20(4):53-57.
[18] 何玉怀, 于慧臣, 郭伟彬, 等. 直接时效GH4169高温合金疲劳裂纹扩展性能实验[J]. 航空动力学报, 2006, 21(2):349-353. HE Yu-huai, YU Hui-chen, GUO Wei-bin, et al. Experimental study on fatigue crack growth behavior of direct aging GH4169 superalloy[J]. Journal of Aerospace Power, 2006, 21(2):349-353.
[19] 杨冬野, 曹福洋, 许文勇, 等. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014,(7):55-59. YANG Dong-ye, CAO Fu-yang, XU Wen-yong, et al. Fatigue crack growth behavior of spray formed GH738 alloy[J]. Journal of Materials Engineering, 2014,(7):55-59.
[20] 薛红前, 姜祎君, 封硕. 镍基合金超声疲劳裂纹扩展寿命预测研究[J]. 材料工程, 2014,(3):7-13. XUE Hong-qian, JIANG Yi-jun, FENG Shuo. Life prediction of ultrasonic fatigue crack propagation of nickel-based alloy[J]. Journal of Materials Engineering, 2014,(3):7-13.
[21] KOBAYASHI K. High cycle fatigue properties of nickel-base alloy 718[J]. Acta Metallurgica Sinica, 2004, 17(4):345-349.
[1] 郭军, 杨卯生, 卢德宏, 李新宇. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理[J]. 材料工程, 2019, 47(7): 134-143.
[2] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[3] 杜博睿, 张学军, 郭绍庆, 李能, 孙兵兵, 唐思熠. 激光快速成形GH4169合金显微组织与力学性能[J]. 材料工程, 2017, 45(1): 27-32.
[4] 李振荣, 马春蕾, 蒋成勇, 田素贵, 陈礼清, 刘相华. 热连轧GH4169合金的点阵常数与蠕变性能[J]. 材料工程, 2016, 44(3): 97-102.
[5] 任学冲, 陈利钦, 刘鑫贵, 项彬, 林国标. 表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J]. 材料工程, 2015, 43(12): 1-5.
[6] 明宪良, 陈静, 谭华, 杨海欧, 林鑫. 激光立体成形GH4169高温合金γ"相的高温粗化行为[J]. 材料工程, 2014, 0(8): 8-14.
[7] 王晶, 张亦良, 李晓慧, 胡伟, 李晋伟. 疲劳可靠性实验中的“截尾寿命”处理方法[J]. 材料工程, 2014, 0(7): 85-91.
[8] 韦家虎, 董建新, 喻健, 付书红, 姚志浩, 张麦仓. GH4169合金双锥实验组织模拟与验证研究[J]. 材料工程, 2013, (8): 70-74.
[9] 樊俊铃, 郭杏林, 吴承伟, 邓德伟. 热像法和能量法快速评估Q235钢的疲劳性能[J]. 材料工程, 2012, 0(12): 71-76.
[10] 田素贵, 李振荣, 赵忠刚, 陈礼清, 刘相华. 冷却方式对热连轧GH4169合金组织与蠕变行为的影响[J]. 材料工程, 2012, 0(10): 1-7.
[11] 陈国胜, 王庆增, 张玩良, 李伟, 王资兴, 刘丰军, 王世普. GH4169合金细晶棒材的连轧工艺及其组织与性能[J]. 材料工程, 2010, 0(4): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn