Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 94-100    DOI: 10.11868/j.issn.1001-4381.2016.02.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
制动频率对CaSO4晶须增强树脂基复合摩擦材料性能的影响
黄俊钦, 林有希
福州大学 机械工程及自动化学院, 福州 350108
Effect of Braking Frequency on Properties of CaSO4 Whiskers Reinforced Resin-based Composite Friction Materials
HUANG Jun-qin, LIN You-xi
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
全文: PDF(2563 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用热模压成型工艺制备CaSO4晶须增强树脂基复合摩擦材料(试样A),并选用一种市售材料(试样B)作对比,研究制动频率对两种材料摩擦学性能的影响,利用SEM及EDAX观测磨损表面形貌与表面膜成分变化,并分析其磨损影响机理。结果表明:随着制动频率的变化,由于CaSO4晶须的增韧补强作用,试样A的摩擦因数始终维持在较高水平0.48左右,制动平稳可靠,对偶件损伤程度轻,磨损机理以磨粒磨损为主;而试样B的摩擦因数则是先降低后升高,且对制动速率的变化敏感,磨损机理以黏着磨损和氧化磨损为主。两种材料摩擦表面温度及磨损率均随着制动频率的变化而升高,但在制动频率小于35次时,两种材料均表现出良好的耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄俊钦
林有希
关键词 CaSO4晶须树脂基摩擦材料制动频率摩擦磨损    
Abstract:CaSO4 whisker reinforced resin-based composite friction materials(sample A) were prepared by thermo-compression process, and a commercial brake material(sample B) was selected as a reference. The influence of braking frequency on the tribological performance of samples was investigated by CHASE tester. The SEM and EDAX were used to observe the wear surface morphology and the composition of the surface of films respectively, and the influence mechanism of braking frequency on wear mechanism of samples was analyzed. The results show that CaSO4 whisker has played a significant toughening and strengthening effects on sample A, the average friction coefficient of sample A always maintains at a high level of around 0.48 and exhibits stable and reliable braking performance with the change of braking frequency. Moreover, the damage degree of dual disc is lighter, and the main wear mechanism is abrasive wear. While the friction coefficient of sample B decreases firstly and then increases, and shows sensitive to the change of braking velocity, as well as its main wear mechanism is adhesive wear and oxidation wear. The friction surface temperature and mass wear rate of samples are increased with increasing of braking frequency, but both materials show good wear resistance when the braking frequency less than 35 times.
Key wordsCaSO4 whisker    resin-based friction material    braking frequency    friction and wear
收稿日期: 2015-02-13      出版日期: 2016-02-22
中图分类号:  U465  
  TB332  
通讯作者: 林有希(1967-),男,教授,博士,研究方向:摩擦学、先进制造技术,联系地址:福建省福州市福州地区大学新区学园路2号福州大学机械工程及自动化学院(350108),E-mail:lyx@fzu.edu.cn     E-mail: lyx@fzu.edu.cn
引用本文:   
黄俊钦, 林有希. 制动频率对CaSO4晶须增强树脂基复合摩擦材料性能的影响[J]. 材料工程, 2016, 44(2): 94-100.
HUANG Jun-qin, LIN You-xi. Effect of Braking Frequency on Properties of CaSO4 Whiskers Reinforced Resin-based Composite Friction Materials. Journal of Materials Engineering, 2016, 44(2): 94-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.015      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/94
[1] SHIN M W, CHO K H, LEE W K, et al. Tribological characteristics of binder resins for brake friction materials at elevated temperatures[J]. Tribology Letters, 2010, 38(2):161-168.
[2] BIJWE J N, MAJUMDAR N, et al. Influence of modified phenolic resins on the fade and recovery behavior of friction materials[J]. Wear, 2005, 259(9):1068-1078.
[3] 林有希,余大刚,高诚辉,等.悬浮聚合酚醛树脂基制动材料的摩擦学性能[J].粉末冶金材料科学与工程,2011,16(6):815-819. LIN You-xi, YU Da-gang, GAO Cheng-hui, et al. Friction and wear properties of suspension-polymerization phenolic resin based composites[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(6):815-819.
[4] FARAMARZ T,SALMAN J. Analysis of heat conduction in a disk brake system[J]. Heat Mass Transfer, 2009, 45(8):1047-1059.
[5] LIVIU S B. The influence of braking time on heat flow through the friction surfaces of the friction elements of disk brakes for railway vehicles[J]. Transport, 2011, 26(1):75-78.
[6] 胡昌斌,沈金荣,陈友杰.长下坡路段货车毂式制动器摩擦衬片温升规律[J].交通运输工程学报,2009,9(4):49-55. HU Chang-bin, SHEN Jin-rong, CHEN You-jie. Temperature-rising laws of drum brake pad for truck on long downgrades[J]. Journal of Traffic and Transportation Engineering, 2009, 9(4):49-55.
[7] 高诚辉,黄健萌,林谢昭,等.盘式制动器摩擦磨损热动力学研究进展[J].中国工程机械学报,2006,4(1):83-88. GAO Cheng-hui, HUANG Jian-meng, LIN Xie-zhao, et al. Research status on heat dynamics of friction and wear for disc-pad braking systems[J]. Chinese Journal of Construction Machinery, 2006, 4(1):83-88.
[8] 陈尔凡,田雅娟,周本廉.晶须增强体及其复合材料研究进展[J].高分子材料科学与工程,2002,18(4):1-5. CHEN Er-fan, TIAN Ya-juan, ZHOU Ben-lian. Development of the researches on whiskers and the composites[J]. Polymer Materials Science and Engineering, 2002, 18(4):1-5.
[9] 林有希,高诚辉,王媛.镁盐晶须增强汽车制动复合材料的摩擦磨损性能[J].粉末冶金材料科学与工程,2009,14(5):316-319. LIN You-xi, GAO Cheng-hui, WAMG Yuan. Friction and wear properties of M-HOS whisker reinforced automobile brake composites[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(5):316-319.
[10] 陈辉,吴其胜.硫酸钙晶须增强树脂基复合摩擦材料摩擦磨损性能的研究[J].化工新型材料,2012,40(8):111-112. CHEN Hui, WU Qi-sheng. Research on friction attrition performance of resin based friction composite enhanced by calcium sulfate whisker[J]. New Chemical Materials, 2012, 40(8):111-112.
[11] 王德波,杨继萍,黄鹏程.硫酸钙晶须改性聚氨酯环氧树脂的粘接性能[J].复合材料学报,2008,25(4):1-6. WANG De-bo, YANG Ji-ping, HUANG Peng-cheng. Adhesive properties of calcium sulfate whisker-modified polyurethane-epoxy resins[J]. Acta Materiae Compositae Sinica, 2008, 25(4):1-6.
[12] 李辉,褚国红,施强,等.硫酸钙晶须改性氟橡胶复合材料的热稳定性[J].复合材料学报,2011,28(4):58-62. LI Hui, CHU Guo-hong, SHI Qiang, et al. Thermal stability of calcium sulfate whisker modified fluororubber composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4):58-62.
[13] 葛毅成,易茂中,涂欣达,等.不同载荷下C/C复合材料往返式滑动摩擦行为[J].中南大学学报(自然科学版),2010,41(1):114-119. GE Yi-cheng, YI Mao-zhong, TU Xin-da, et al. To-fro sliding tribological behavior of C/C composite under different loads[J]. Journal of Central South University(Science and Technology), 2010, 41(1):114-119.
[14] 张翔,李克智,李贺军,等.石墨粒度对纸基摩擦材料摩擦磨损性能的影响[J].无机材料学报,2011,26(6):80-84. ZHANG Xiang, LI Ke-zhi, LI He-jun, et al. Effect of graphite particle size on friction and wear performance of paper-based friction material[J]. Journal of Inorganic Materials, 2011, 26(6):80-84.
[15] BAO J S, CHEN G Z, ZHU Z C, et al. Friction and wear properties of the composite brake material for mine hoister under different initial velocities[J]. Journal of Engineering Tribology, 2012, 226(10):873-879.
[16] 丛培红,吴行阳,卜娟,等.制动用有机摩擦材料的研究进展[J].摩擦学学报,2011,31(1):88-96. CONG Pei-hong, WU Xing-yang, BU Juan, et al. Progress in research of organic frictional materials for automobile and train braking[J]. Tribology, 2011, 31(1):88-96.
[17] JANG H, KO K, KIM S J, et al. The effect of metal fibers on the friction performance of automotive brake friction materials[J]. Wear, 2004, 256(3):406-414.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[3] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[4] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[5] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[6] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[7] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[8] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[9] 金小越, 吴杰, 杨璇, 王彬, 陈琳, 曲尧, 薛文斌. 槽电压对纯铁表面液相等离子体电解硼碳氮三元共渗层摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 58-64.
[10] 王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
[11] 王铁钢, 李柏松, 阎兵, 范其香, 刘艳梅, 宫骏, 孙超. 爆炸喷涂WC-Co/MoS2-Ni多层复合自润滑涂层的摩擦学行为[J]. 材料工程, 2017, 45(3): 73-79.
[12] 张雪辉, 周亮亮, 李晓闲, 张陈增, 王成, 章标, 陈颢, 梁彤祥. Y2O3对W-4.9Ni-2.1Fe合金摩擦磨损行为的影响[J]. 材料工程, 2017, 45(11): 115-121.
[13] 曹同坤, 孙何, 王晓明. 采用端面带孔电极进行电火花沉积制备自润滑涂层[J]. 材料工程, 2017, 45(10): 88-94.
[14] 刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
[15] 张占辉, 王义强, 叶国云, 韩子渊, 张志杰, 骆海波. 仿生非光滑表面对对磨副的损伤机理研究[J]. 材料工程, 2016, 44(8): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn