Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 101-106    DOI: 10.11868/j.issn.1001-4381.2016.02.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
取向硅钢表面绝缘涂层微结构与耐腐蚀性能
陈武山1, 王晨1, 付骏1, 崔熙贵2
1. 福州大学 材料科学与工程学院, 福州 350108;
2. 江苏大学 机械工程学院, 江苏 镇江 212013
Microstructure and Corrosion Resistance of Surface Insulation Coating on Grain-oriented Silicon Steel
CHEN Wu-shan1, WANG Chen1, FU Jun1, CUI Xi-gui2
1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China;
2. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
全文: PDF(2132 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用X射线衍射仪、扫描电镜、能谱分析仪和电化学工作站分别研究取向硅钢表面绝缘涂层的相成分、微观形貌、元素分布和耐腐蚀性能。结果表明:绝缘涂层为双层复合结构,底层为Mg2SiO4相,厚度为0.8μm;顶层为AlPO4相,厚度为1.4μm;两层结合处存在0.4~0.6μm的扩散层。与只涂单层Mg2SiO4相的试样相比,双层涂层试样具有更高的腐蚀电位和极化电阻,更低的腐蚀电流密度,因此耐腐蚀性良好。随着浸泡时间的延长,腐蚀溶液逐渐渗透至硅钢基底,发生腐蚀反应,其腐蚀过程可以分为3个阶段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈武山
王晨
付骏
崔熙贵
关键词 取向硅钢绝缘涂层微结构耐腐蚀性    
Abstract:The phase composition, morphology, element distribution and corrosion resistance of surface insulation coating on the oriented silicon steel were investigated in detail using X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and electrochemical workstation, respectively. The results show that the structure of the insulation coating is double compound layer. The bottom layer is Mg2SiO4 phase with 0.8μm thickness. The top layer is AlPO4 phase with 1.4μm thickness. There is a diffusion area with 0.4~0.6μm thick at the junction of two layers. In comparison to the sample coated single Mg2SiO4 layer, the sample coated double compound layer exhibits higher corrosion potential, higher polarization resistance and lower corrosion current density, thus leading to better corrosion resistance. With the increase of immersion time, the corrosion solution gradually permeates into the insulation coating and reaches the silicon steel substrate, and then reacts with the substrate. The corrosion process can be divided into three stages.
Key wordsgrain-oriented silicon steel    insulation coating    microstructure    corrosion resistance
收稿日期: 2014-09-09      出版日期: 2016-02-22
中图分类号:  TG174.4  
通讯作者: 王晨(1979-),男,副教授,研究生导师,研究方向:磁性材料、材料表面处理、电致变色材料,联系地址:福州大学材料科学与工程学院(350108),E-mail:6538929@qq.com     E-mail: 6538929@qq.com
引用本文:   
陈武山, 王晨, 付骏, 崔熙贵. 取向硅钢表面绝缘涂层微结构与耐腐蚀性能[J]. 材料工程, 2016, 44(2): 101-106.
CHEN Wu-shan, WANG Chen, FU Jun, CUI Xi-gui. Microstructure and Corrosion Resistance of Surface Insulation Coating on Grain-oriented Silicon Steel. Journal of Materials Engineering, 2016, 44(2): 101-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.016      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/101
[1] 吴忠旺,赵宇,李军,等. 后天抑制剂取向硅钢析出物的研究[J]. 材料工程,2012,(7):55-58. WU Z W, ZHAO Y, LI J, et al. Study on precipitates of grain-oriented silicon steel produced by acquired inhibitor method[J]. Journal of Materials Engineering, 2012,(7):55-58.
[2] FU Y J, JIANG Q W, WANG B C, et al. Morphologies and influential factors of forsterite film in grain-oriented silicon steel[J]. Journal of Iron and Steel Research, International, 2013, 20(11):105-110.
[3] LIU L H, LI L J, HUANG J J, et al. Effect of pulsed magnetic field annealing on the microstructure and texture of grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(14):2301-2305.
[4] KLAUS G, GIUSEPPE A, STEFANO F, et al. Recent technology developments in the production of grain-oriented electrical[J]. Steel research int, 2005, 76(6):413-415.
[5] KUBOTA T, FUJIKURA M, USHIGAMI Y. Recent progress and future trend on grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2000, 215(20):69-73.
[6] 何忠治,赵宇,罗海文. 电工钢[M]. 北京:冶金工业出版社,2012.
[7] CESAR M G M M, VASCONCELOS D C L, VASCONCELOS W L. Microstructural characterization of magnesias derived from different sources and their influence on the structure of ceramic films formed on a 3% silicon steel surface[J]. Journal of Materials Science, 2002, 37(11):2323-2329.
[8] 孔祥华,白云龙,崔建利,等. 取向硅钢张力涂层研究进展[D]. 北京:北京科技大学,2005. KONG X H, BAI Y L, CUI J L, et al. Research advance of tension coating on the grain oriented silicon steel[D]. Beijing:University of Science and Technology Beijing, 2005.
[9] LIN A, ZHANG X, FANG D J, et al. Study of an environment-friendly insulating coating with high corrosion resistance on electrical steel[J]. Anti-corrosion Methods and Materials, 2010, 57(6):297-304.
[10] KARENINA L S, KORZUNIN G S, PUZHEVICH R B. Effect of the phosphate component of electrical insulating coating on the magnetic losses in grain-oriented electrical steel[J]. The Physics of Metals and Metallography, 2011, 111(1):21-24.
[11] RAO M A, RAJESH K, KUMAR M V P. Evolution of corrosion damage to cold rolled grain oriented steel sheets under rainwater followed by ambient atmosphere exposure[J]. Engineering Failure Analysis, 2013, 30(3):10-16.
[12] 邵媛媛,杨平,毛卫民. 电工钢中柱状晶热压缩时取向的变化及对析出的影响[J]. 材料工程, 2014,(10):75-81. SHAO Y Y, YANG P, MAO W M. Evolution of orientations and their influence on precipitation during hot compression of columnar-grained electrical steel[J]. Journal of Materials Engineering, 2014,(10):75-81.
[13] KARENINA L S, DRAGOSHANSKⅡ Y N, PUZHEVICH R B, et al. Effect of an electrical insulating coating on the efficiency of laser treatment of grain-oriented electrical steel[J]. The Physics of Metals and Metallography, 2011, 112(3):231-236.
[14] YOSHITOMI Y, TAKAHASHI N, TANAKA O, et al. Ultrathick glassless high-permeability, grain-oriented silicon steel sheets with high workability[J]. Journal of Magnetism and Magnetic Materials, 1996, 160(4):123-124.
[15] PUZHEVICH R B, TSYRLIN M B, KORZUNIN G S. Effect of electrical insulating coatings on the properties of anisotropic electrical-sheet steel[J]. The Physics of Metals and Metallography, 2006, 102(4):366-375.
[16] 胡守天,孔祥华,王向欣,等. 高磁感取向硅钢表面处理对铁芯损耗的影响[J]. 材料热处理学报, 2010, 31(4):137-140. HU S T, KONG X H, WANG X X, et al. Surface treatment and its influence on iron loss of grain-oriented silicon steel[J]. Journal of Material Heat Treatment, 2010, 31(4):137-140.
[17] 崔学军,李国军,董洪亮,等. 温度对改性硅溶胶涂层结构及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(2):155-159. CUI X J, LI G J, DONG H L, et al. Effect of temperature on structure and corrosion resistance of modified silica sol coatings[J].Journal of Chinese Society for Corrosion and Protection, 2011, 31(2):155-159.
[18] 张鉴清,曹楚南. 电化学阻抗谱方法研究评价有机涂层[J]. 腐蚀与防护, 1998, 19(3):99-104. ZHANG J Q, CAO C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy[J]. Corrosion & Protection, 1998, 19(3):99-104.
[19] 宫丽,卢琳,卢燕平. 薄型无铬有机复合涂层钢板耐蚀性的研究[J]. 材料保护, 2008, 41(2):68-71. GONG L, LU L, LU Y P. Corrosion resistance of chromate-free thin organic composite coatings on hot-dipped galvanized steel sheet[J]. Material Protection, 2008, 41(2):68-71.
[1] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[2] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[3] 王晨, 王魁, 肖小波, 丁浩, 汪炳叔, 毛朝武, 张维林, 金钢南. 钨酸钠对取向硅钢绝缘涂层性能的影响[J]. 材料工程, 2018, 46(4): 51-57.
[4] 吕奕菊, 谭家栩, 蒋世权, 文衍宣, 张淑芬. 喷雾干燥条件对合成纳/微结构LiFePO4/C形貌及性能的影响[J]. 材料工程, 2018, 46(12): 85-94.
[5] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[6] 刘恭涛, 刘志桥, 杨平, 毛卫民. 初次再结晶组织和渗氮量对低温渗氮取向硅钢二次再结晶行为的影响[J]. 材料工程, 2018, 46(1): 16-24.
[7] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[8] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8): 123-131.
[9] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[10] 王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
[11] 金杰, 韩岁伍, 安腾, 马君杰, 张伟. CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能[J]. 材料工程, 2016, 44(10): 33-40.
[12] 龚坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展[J]. 材料工程, 2015, 43(6): 102-112.
[13] 杨可, 杨克, 包晔峰. 氮合金化堆焊硬面合金的耐腐蚀性能研究[J]. 材料工程, 2015, 43(5): 33-37.
[14] 严国春, 何承绪, 孟利, 马光, 吴细毛. 取向硅钢表面氧化层的结构及其对渗氮的影响[J]. 材料工程, 2015, 43(12): 89-94.
[15] 张建, 罗国强, 沈强, 黄治军. 添加Ni箔中间层的Mg-Al扩散焊接接头界面结构和力学性能[J]. 材料工程, 2015, 43(1): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn