Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 107-114    DOI: 10.11868/j.issn.1001-4381.2016.02.017
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
石油钻杆材料G105在不同条件下的疲劳断裂
黄本生1, 陈想1, 陈勇彬1, 李永斌2
1. 西南石油大学 材料科学与工程学院, 成都 610500;
2. 辽宁省新民市沈阳采油厂, 沈阳 110316
Mechanism of Fatigue Fracture of G105 Drill Pipe Material Under Different Conditions
HUANG Ben-sheng1, CHEN Xiang1, CHEN Yong-bin1, LI Yong-bin2
1. School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China;
2. Shenyang Oil Production Plant of Liaohe Oilfield, Shenyang 110316, China
全文: PDF(2918 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用国产PQ-6型旋转弯曲疲劳试验机研究钻杆管体材料G105的弯曲疲劳性能以及H2S腐蚀和缺口对试样弯曲疲劳性能的影响,利用金相显微镜和扫描电子显微镜对光滑试样断口、缺口试样断口以及H2S腐蚀后试样断口进行微观形貌分析。结果表明:在光滑试样的疲劳极限载荷作用下,经过H2S腐蚀后的光滑试样的疲劳寿命和缺口试样的疲劳寿命相当,材料的疲劳寿命都从106降低至104;缺口试样在缺口的高应力集中效应下,加快疲劳裂纹形核过程。H2S腐蚀对钻杆疲劳性能影响的主要作用在于氢原子在材料内缺陷处聚集引起材料疲劳性能降低,缺口和H2S腐蚀都会加快疲劳裂纹的扩展。材料疲劳断裂主要是因为试样在交变应力的作用下上产生滑移最后致使位错塞积而导致的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄本生
陈想
陈勇彬
李永斌
关键词 G105钻杆钢疲劳断裂断口滑移    
Abstract:The bending fatigue fracture properties of G105 drill pipe body materials and the influence of H2S corrosion and notch on the specimen bending fatigue performance were studied using the domestic PQ-6 type rotating bending fatigue testing machine. The fracture surfaces of smooth specimens, notched specimens and H2S corroded specimens were analyzed using metallographic microscope and scanning electron microscope. The results show that under the stress of smooth specimens' ultimate fatigue loading, the fatigue life of specimens corroded by H2S is same as that of notched specimens, declining from 106 to 104. The high stress concentration effect of notch can accelerate the process of fatigue crack nucleation in the notch specimen. The main role of H2S corrosion is that the hydrogen atoms will gather together at the inner defects, which will decrease the fatigue life. H2S corrosion and notch both can accelerate the propagation speed of the fatigue cracks. The main reason for the fatigue fracture of material is that the specimens under action of alternating stress engender slip, finally resulting in dislocation stacking.
Key wordsG105 drill pipe steel    fatigue fracture    fracture    slip
收稿日期: 2015-03-15      出版日期: 2016-02-22
中图分类号:  G105  
通讯作者: 黄本生(1969-),男,教授,主要从事材料腐蚀、材料学、材料加工、油气田材料、材料表面工程研究工作,联系地址:四川成都西南石油大学材料科学与工程学院(610500),E-mail:hbslxp@163.com     E-mail: hbslxp@163.com
引用本文:   
黄本生, 陈想, 陈勇彬, 李永斌. 石油钻杆材料G105在不同条件下的疲劳断裂[J]. 材料工程, 2016, 44(2): 107-114.
HUANG Ben-sheng, CHEN Xiang, CHEN Yong-bin, LI Yong-bin. Mechanism of Fatigue Fracture of G105 Drill Pipe Material Under Different Conditions. Journal of Materials Engineering, 2016, 44(2): 107-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.017      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/107
[1] 雒设计,赵康,王荣.S135钻杆钢的拉扭复合加载疲劳行为[J].材料工程,2013,(1):40-44. LUO She-ji, ZHAO Kang, WANG Rong. Biaxial fatigue behavior under combined axial and torsion loading for S135 drill pipe steel[J]. Journal of Materials Engineering, 2013,(1):40-44.
[2] 雒设计,赵康,王荣,不同应力比下S315钻杆钢疲劳裂纹的扩展行为[J].机械工程材料,2013,37(7):72-76. LUO She-ji, ZHAO Kang, WANG Rong. Fatigue cracks propagation of S135 drill pipe steel at different stress rations[J]. Material of Mechanical Engineering, 2013, 37(7):72-76.
[3] 李鹤林.石油钻柱失效分析与预防[M].北京:石油工业出版社,1999.18-40. LI He-lin. The Failure Analysis and Prevention of Oil Drill String[M]. Beijing:Petroleum Industry Press,1999.18-40.
[4] LI F P, LIU Y G, WANG X H, et al. Failure analysis of φ127mm IEU G105 drill pipe washes out[J]. Engineering Failure Analysis, 2011, 18:1867-1872.
[5] MISCOW G F,MIRANDA P E V,NETTO T A. Techniques to characterize fatigue behaviour of full size drill pipes and small scale samples[J]. International Journal of Fatigue, 2004,26(6):578-584.
[6] STANZL-TSCHEGG S E,MAYER H.Variable amplitude loading in the very high cycle regime[J].Fatigue & Fracture of Engineering Materials & Structures,2002,25:887-896.
[7] MA L, WANG M Q, SHI J. Influence of niobium microalloying on rotating bending fatigue properties of case carburized steel[J].Materials Science and Engineering:A,2008,498(1-2):258-265.
[8] YANG Z G,YAO G, LI G Y, et al. The effect of inclusions on the fatigue behavior of fine-grained high strength 42CrMoVNb steel[J].International Journal of Fatigue,2004,26(9):959-966.
[9] BERTINI L,BEGHINI M, SANTUS C, et al. Resonant test rigs for fatigue full scale testing of oil drill[J].International Journal of Fatigue,2008,30(6):978-988.
[10] BARYSHNIKOV A,CALDERONI A,LIGRONE A, et al. A new approach to the analysis of drillstring fatigue behavior[J].SPE Drilling & Completion,1997,12(2):77-84.
[11] 王新虎,邝献任,吕拴录,等.材料性能对钻杆腐蚀疲劳寿命影响的试验研究[J].石油学报,2009,30(2):312-316. WANG Xin-hu, KUANG Xian-ren, LV Shuan-lu. The experiment research of material performance on the influence of fatigue life of drill pipe corrosion[J]. Acta Petrolei Sinica, 2009, 30(2):312-316.
[12] 王磊.S135钻杆钢氧腐蚀和腐蚀疲劳影响因素的研究[D].西安:西北工业大学,2006. WANG Lei. The research on the oxygen corrosion and the influence factors of corrosion about S135 drill pipe steel fatigue[D].Xi'an:Northwestern Polytechnical University, 2006.
[13] 张国栋,杨新岐,何鑫龙,等.300M超高强度钢及其电子束焊接接头高周疲劳断裂机制研究[J].航空材料学报,2014,34(1):70-75. ZHANG Guo-dong, YANG Xin-qi, HE Xin-long, et al. High cycle fatigue failure mechanism of 300M ultra-high strength steel and its electron beam welded joints[J]. Journal of Aeronautical Materials, 2014,34(1):70-75.
[14] 王凯,闫志峰,王文先,等.循环载荷作用下镁合金温度演化及高周疲劳性能预测[J].材料工程,2014,(1):85-89. WANG Kai, YAN Zhi-feng, WANG Wen-xian, et al. Temperature evolution and fatigue properties prediction for high cycle fatigue of magnesium alloy under alternate loading[J]. Journal of Materials Engineering,2014,(1):85-89.
[15] DALE B A. An experimental investigation of fatigue-crack growth in drillstring tubulars[J].SPE Drilling Engineering,1988,3(4):356-362.
[16] RADKEVYCH O I, CHUMALO H V, DOMINYUK I M, et al. Degradation of the tubing metal in hydrogen-sulfide environments[J]. Materials Science, 2002, 38(6):884-888.
[17] RADKEVYCH O I,CHUMALO H V, YURKEVYCH R M, et al. Investigation of the serviceability of tubing strings made of steel of strength group K[J]. Materials Science, 2005, 41(1):129-130.
[1] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[2] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[3] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[4] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[5] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[6] 张晓雯, 吴南, 张旋, 马丽婷, 厉蕾. 透明聚碳酸酯材料疲劳断裂行为[J]. 材料工程, 2017, 45(11): 30-35.
[7] 宋广胜, 陈强强, 徐勇, 李娟, 张士宏. AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J]. 材料工程, 2016, 44(4): 1-8.
[8] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[9] 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11): 78-82.
[10] 吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
[11] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[12] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[13] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
[14] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
[15] 陈亚光, 蔡晓兰, 王开军, 胡翠, 孙鸿鹏, 乐刚. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014, 0(11): 55-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn