Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (3): 52-59    DOI: 10.11868/j.issn.1001-4381.2016.03.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
高聚物熔体锥形收敛流场分布的影响因素数值分析
任重1,2, 黄兴元1, 柳和生1
1. 南昌大学聚合物加工研究室, 南昌 330031;
2. 江西科技师范大学光电子与通信重点实验室, 南昌 330038
Numerical Analysis on Influence Factors of Conical Convergent Flow Field Distribution of Polymer Melt
REN Zhong1,2, HUANG Xing-yuan1, LIU He-sheng1
1. Polymer Processing Research Laboratory, Nanchang University, Nanchang 330031, China;
2. Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
全文: PDF(3948 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在入口收敛流基本方程基础上,通过建立锥形入口结构和有限元网格模型,运用数值仿真方法,采用Cross本构方程和壁面无滑移模型,速度采用二次插值、压力采用线性插值和黏度牛顿迭代的有限元计算方法,对影响广义等温流动熔体在口模入口和出口区域的压力、速度和剪切速率分布的熔体材料、工艺参数和口模形状等因素进行了数值分析。研究结果表明,压力分布与熔体黏度、流动指数、松弛时间、入口流率和流道压缩比等有直接关系,而法向速度和剪切速率仅受入口流率的影响较大。通过对多个因素量化分析表明,压力分布随着熔体黏度、入口流率和流道压缩比的增大而增大,而随着流动指数和松弛时间的增大而减小,法向速度和剪切速率随着入口流率增大而增大;这些影响因素使得口模出口处压力、法向速度和剪切速率均不为零,从而引发离模膨胀等问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任重
黄兴元
柳和生
关键词 压力分布法向速度剪切速率有限元分析离模膨胀    
Abstract:To interpret the effect of multiple factors on pressure, velocity and shear rate distribution of polymer melt extrusion at entrance and exit of the die, a conical die structure and the finite element mesh model were established based on the basic equation of entrance convergent flow, and material parameters, process parameters and die shapes were considered via the numerical simulation and finite element method(FEM). In the FEM, Cross constitute equation, wall no-slip model were employed, and some FEM computing methods, e.g., quadratic interpolation of velocity, linear interpolation of pressure and viscosity Newton iteration algorithm were used for the generalized isothermal flow melt. The results show that the pressure distribution is directly related with the melt viscosity, flow index, relaxation time, entrance flow rate, and channel compression ratio etc, and the normal velocity and shear rate is mainly affected by the entrance flow rate. The quantitative analysis of multiple factors shows that the pressure increases with the increasing of melt viscosity, entrance flow rate and channel compression ratio, but decreases with the increasing of the flow index and relaxation time, and the normal velocity and shear rate increase with the increasing of the flow rate. These factors make the die exit pressure, normal velocity and shear rate not to be zero, thus lead to problems including die swell and etc.
Key wordspressure distribution    normal velocity    shear rate    finite element analysis    die swell
收稿日期: 2014-08-19      出版日期: 2016-03-22
中图分类号:  TQ320.66+3  
通讯作者: 黄兴元(1961-),男,教授,博士,主要从事聚合物流变学及加工成型专业等研究, 联系地址:江西省南昌市学府大道999号南昌大学机电工程学院聚合物加工研究室(330031),E-mail:huangxingyuan001@126.com     E-mail: huangxingyuan001@126.com
引用本文:   
任重, 黄兴元, 柳和生. 高聚物熔体锥形收敛流场分布的影响因素数值分析[J]. 材料工程, 2016, 44(3): 52-59.
REN Zhong, HUANG Xing-yuan, LIU He-sheng. Numerical Analysis on Influence Factors of Conical Convergent Flow Field Distribution of Polymer Melt. Journal of Materials Engineering, 2016, 44(3): 52-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.03.009      或      http://jme.biam.ac.cn/CN/Y2016/V44/I3/52
[1] 王伟,李锡夔,韩先洪. 高聚物挤出胀大的迭代稳定分步算法模拟[J].机械工程学报,2010,46(2):47-54. WANG Wei, LI Xi-kui, HAN Xian-hong. Simulation of polymer extrusion swelling by using iterative stabilized fractional step algorithm[J]. Journal of Mechanical Engineering, 2010,46(2):47-54.
[2] 王国林, 刘高君, 王磊, 等. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, (2):51-54. WANG Guo-lin, LIU Gao-jun, WANG Lei, et al. The finite element simulation of tread rubber coextrusion[J]. Journal of Materials Engineering, 2014, (2):51-54.
[3] TANNER R. A theory of die-swell[J]. Journal of Polymer Science Part A-2:Polymer Physics,1970, 8(12):2067-2078.
[4] WILLIAM W G, STEVEN D G, RICHARD L C. Die swell in molten polymers[J].Trans Soc Rheol,1970, 14:519.
[5] LIANG J Z. A relationship between extrudate swell ratio and entry stored elastic strain energy during die flow of tyre compounds[J]. Polymer Testing, 2004, 23(4):441-446.
[6] HUANG S X, LU C J. Stress relaxation characteristics and extrudate swell of the IUPAC-LDPE melt[J]. J Non-Newtonian Fluid Mech, 2006, 36:147-156.
[7] LIANG J Z. Quantitative characterization of viscoelastic properties and their relationship during extrusion flow of polymer melts[J]. Polymer-Plastics Technology and Engineering, 2006, 45(3):329-334.
[8] 柳和生,熊洪槐,涂志刚,等.聚合物挤出胀大研究进展[J]. 塑性工程学报,2001,8(1):13-18. LIU He-sheng, XIONG Hong-huai, TU Zhi-gang, et al. The advances in study on extrusion swell of polymer[J]. Journal of Plasticity Engineering, 2001,8(1):13-18.
[9] LI Y, ZHENG J R, ZHOU W. A simple method for simulating viscoelastic fluid flows in slit channel[J]. International Journal of Computational Fluid Dynamics, 2011,25(6):355-363.
[10] ZHAO J, SONG M S, ZHU C W, et al. Dynamic theory of die swell for entangled polymeric liquids in tube extrusion[J]. Chinese J Chem Phys,2008, 21(1):55-88.
[11] 王克检. 聚合物挤出胀大的一个定量模型及应用[J]. 高分子材料科学与工程,2011,27(1):161-165. WANG Ke-jian. A quantitative model of extrudate swell for polymers and its applications[J]. Polymer Materials Science and Engineering, 2011,27(1):161-165.
[12] 梁基照. 聚合物流体平入口收敛流型的理论分析[J]. 弹性体,2005,15(1):32-35. LIANG Ji-zhao. Theoretical analysis on planar entry converging flow patterns of polymeric fluids[J]. China Elastomerics, 2005,15(1):32-35.
[13] LIANG J Z. New short die swell equation for polymer extrusion[J]. Plast Rubber Compos Process Appl, 1995, 23:93-95.
[14] 凌志英,梁基照. 非牛顿流体入口收敛流动的数学模型分析[J]. 华南理工大学学报(自然科学版),1996, 24(2):146-149. LING Zhi-ying, LIANG Ji-zhao. Analysis on the mathematical model for non-Newtonian fluids in entry converging flow[J]. Journal of South China University of Technology(Natural Science), 1996, 24(2):146-149.
[15] 梁基照.聚合物材料加工流变学[M].北京:国防工业出版社,2008.98-114. LIANG Ji-zhao. Polymer Processing Rheology[M]. Beijing:National Defense Industry Press, 2008.98-114.
[16] 赵良知,唐国俊.聚合物熔体在圆锥口型的挤出胀大方程[J].中国塑料,1996,10(4):31-34. ZHAO Liang-zhi, TANG Guo-jun. A equation extrusion swell of polymer melts through a conical die[J]. China Plastics, 1996,10(4):31-34.
[17] 王贵恒.高分子材料成型加工原理[M]. 北京:化学工业出版社,1982. WANG Gui-heng. Polymer Molding Processing Principle[M]. Beijing:Chemical Industry Press, 1982.
[18] Fluent Inc.Polyflow 3.10 User'S Guide[M]. Belgium:Fluent Inc, 2003.187-189.
[1] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[2] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[3] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[4] 龚伟, 周黎明, 王恩泽, 白朝中. Q235钢基体LZAS微晶玻璃/Y-TZP梯度涂层接触应力的数值模拟[J]. 材料工程, 2014, 0(9): 20-25.
[5] 乔印虎, 韩江, 张春燕, 陈杰平. 智能复合材料风力机叶片设计与有限元分析[J]. 材料工程, 2013, 0(5): 57-61.
[6] 郭昉, 张保国, 田欣利, 王健全, 李富强, 毛亚涛. 氮化硅陶瓷柱塞套油孔的超声振动加工[J]. 材料工程, 2013, 0(3): 22-26.
[7] 范世通, 汤海波, 张述泉, 王华明. 梯度复合材料热应力影响因素正交有限元分析[J]. 材料工程, 2012, 0(8): 1-4.
[8] 陈高升, 张连鸿, 栗付平, 覃海鹰, 李满福. 球面层状弹性轴承结构对其力学行为影响的有限元分析[J]. 材料工程, 2009, 0(10): 15-19.
[9] 郭运强, 张克实, 耿小亮, 刘芹, 秦亮. 基体性质对含涂层系统压痕响应的影响[J]. 材料工程, 2006, 0(6): 24-27.
[10] 何小东, 张建勋, 巩水利, 冯耀荣. TC4钛合金激光焊接应力变形有限元分析[J]. 材料工程, 2005, 0(8): 39-42,63.
[11] 王宇飞, 杨振国, 郭宝山. SHS-离心法制备陶瓷复合管道热应力的有限元分析[J]. 材料工程, 2005, 0(2): 6-9.
[12] 宋凯, 唐继红, 钟万里, 刘伟成, 任吉林. 铁磁构件应力集中的有限元分析和磁记忆检测[J]. 材料工程, 2004, 0(4): 40-42,48.
[13] 盛文斌, 杨锐, 刘羽寅, 徐东生, 李东. TiAl基合金熔体离心铸造过程中溢出临界值分析[J]. 材料工程, 2001, 0(11): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn