Please wait a minute...
材料工程  2016, Vol. 44 Issue (3): 103-113    DOI: 10.11868/j.issn.1001-4381.2016.03.017
  综述 本期目录 | 过刊浏览 | 高级检索 |
陈昱, 王京钰, 李维尊, 鞠美庭
南开大学环境科学与工程学院, 天津 300071
Research Progress in TiO2-based Photocatalysis Material
CHEN Yu, WANG Jing-yu, LI Wei-zun, JU Mei-ting
College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
全文: PDF(2083 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 TiO2以稳定性高、成本低廉等诸多优势在早期光催化研究中备受青睐。然而,TiO2光催化剂的可见光响应程度低、量子效率低等问题,使得光催化领域对 TiO2提出了更高的要求。本文围绕着二氧化钛基光催化材料,从晶面调控,表面等离子体共振及石墨烯复合三个方面入手,总结了在设计和合成光催化剂方面取得的创新性研究成果,最后基于结构设计、合成工艺优化以及新材料探索的角度对新型二氧化钛基光催化材料提出展望。
E-mail Alert
关键词 光催化TiO2高能晶面表面等离子体共振石墨烯    
Abstract:Advanced TiO2-based photocatalysts with novel stability,low cost,and nontoxicity properties are benchmark materials that have been pursued for their high solar-energy conversion efficiency. However,the photocatalytic efficiency is affected by the degree of light absorption,quantum efficiency. In this review,recent researches and developments on TiO2 photocatalysts were summarized and introduced by three methods,namely modulation on morphology and crystal habit,surface plasmon enhanced light absorption,and graphene/TiO2 composite structures. Finally,some challenges are proposed with regards to structure design,modification of synthetic methods and material selection.
Key wordsphotocatalysis    TiO2    high energy facet    surface plasmonic resonance    graphene
收稿日期: 2014-10-10      出版日期: 2016-03-22
中图分类号:  TB34  
通讯作者: 鞠美庭(1962-),男,教授,博士生导师,主要研究方向为生物质固废资源化,联系地址:天津市卫津路94号南开大学环境科学与工程学院(300071),     E-mail:
陈昱, 王京钰, 李维尊, 鞠美庭. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3): 103-113.
CHEN Yu, WANG Jing-yu, LI Wei-zun, JU Mei-ting. Research Progress in TiO2-based Photocatalysis Material. Journal of Materials Engineering, 2016, 44(3): 103-113.
链接本文:      或
[1] FUJISHIMA A,HONDA K,Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
[2] ASAHI R,MORIKAWA T,OHWAKI T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271.
[3] CHEN X,LIU L,YU P Y,et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science,2011,331(6018):746-750.
[4] HOFFMANN M R,MARTIN S T,CHOI W,et al.Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95(1):69-96.
[5] TONG H,OUYANG S,BI Y,et al.Nano-photocatalytic materials:Possibilities and challenges[J]. Advanced Materials,2012,24(2):229-251.
[6] WOAN K,PYRGIOTAKIS G,SIGMUND W.Photocatalytic carbon-nanotube-TiO2 composites[J]. Advanced Materials,2009,21(21):2233-2239.
[7] 曹文斌,许军娜,刘文秀,等. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程,2015,43(3):83-90. CAO W B,XU J N,LIU W X,et al. Research progress on visible light active nitrogen doped nano-TiO2[J]. Journal of Materials Engineering,2015,43(3):83-90.
[8] 张青红.二氧化钛基纳米材料及其在清洁能源技术中的研究进展[J]. 无机材料学报,2012,27(1):1-10. ZHANG Q H.Progress on TiO2-based nanomaterials and its utilization in the clean energy technology[J]. Journal of Inorganic Materials,2012,27(1):1-10.
[9] CHEN W,FAN Z,ZHANG B,et al.Enhanced visible-light activity of titania via confinement inside carbon nanotubes[J]. Journal of the American Chemical Society,2011,133(38):14896-14899.
[10] WU N,WANG J,TAFEN D N,et al.Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts[J]. Journal of the American Chemical Society,2010,132(19):6679-6685.
[11] YANG H G,SUN C H,QIAO S Z,et al.Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature,2008,453(7195):638-641.
[12] AWAZU K,FUJIMAKI M,ROCKSTUHL C,et al.A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society,2008,130(5):1676-1680.
[13] LIU G,YU J C,LU G Q,et al.Crystal facet engineering of semiconductor photocatalysts:Motivations,advances and unique properties[J]. Chemical Communications,2011,47(24):6763-6783.
[14] LIU L,GU X,JI Z,et al.Anion-assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions[J]. Journal of Physical Chemistry C,2013,117(36):18578-18587.
[15] ALIVOV Y,FAN Z Y,A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high {001} facet percentage[J]. Journal of Physical Chemistry C,2009,113(30):12954-12957.
[16] WEN C Z,ZHOU J Z,JIANG H B,et al.Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets[J]. Chemical Communications,2011,47(15):4400-4402.
[17] YANG H G,LIU G,QIAO S Z,et al.Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets[J]. Journal of the American Chemical Society,2009,131(11):4078-4083.
[18] ZHANG D,LI G,YANG X,et al.A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets[J]. Chemical Communications,2009,(29):4381-4383.
[19] LIU M,PIAO L,ZHAO L,et al.Anatase TiO2 single crystals with exposed {001} and {110} facets:facile synthesis and enhanced photocatalysis[J]. Chemical Communications,2010,46(10):1664-1666.
[20] HAN X,KUANG Q,JIN M,et al.Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. Journal of the American Chemical Society,2009,131(9):3152-3153.
[21] DINH C T,NGUYEN T D,KLEITZ F,et al.Shape-controlled synthesis of highly crystalline titania nanocrystals[J]. ACS Nano,2009,3(11):3737-3743.
[22] GORDON T R,CARGNELLO M,PAIK T,et al.Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology,oxygen vacancy concentration,and photocatalytic activity[J]. Journal of the American Chemical Society,2012,134(15):6751-6761.
[23] HU X Y,TIAN C Z,ZHEN J,et al.Single-crystalline anatase TiO2 dous assembled micro-sphere and their photocatalytic activity[J]. Crystal Growth and Design,2009,9(5):2324-2328.
[24] CHEN J S,TAN Y L,LI C M,et al.Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage[J]. Journal of the American Chemical Society,2010,132(17):6124-6130.
[25] LIU S,YU J,JARONIEC M.Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets[J]. Journal of the American Chemical Society,2010,132(34):11914-11916.
[26] LI H,ZENG Y,HUANG T,et al.Hierarchical TiO2 nanospheres with dominant {001} facets:facile synthesis,growth mechanism,and photocatalytic activity[J]. Chemistry-A European Journal,2012,18(24):7525-7532.
[27] YANG W,LI J,WANG Y,et al.A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells[J]. Chemical Communications,2011,47(6):1809-1811.
[28] KIM J Y,LEE D,KIM H J,et al.Annealing-free preparation of anatase TiO2 nanopopcorns on Ti foil via a hydrothermal process and their photocatalytic and photovoltaic applications[J]. Journal of Materials Chemistry A,2013,1(19):5982-5988.
[29] YU S,LIU B,WANG Q,et al.Ionic liquid assisted chemical strategy to TiO2 hollow nanocube assemblies with surface-fluorination and nitridation and high energy crystal facet exposure for enhanced photocatalysis[J]. ACS Applied Materials and Interfaces,2014,6(13):10283-10295.
[30] PAN J,LIU G,LU G Q,et al.On the true photoreactivity order of {001},{010},and {101} facets of anatase TiO2 crystals[J]. Angewandte Chemie-International Edition,2011,50(9):2133-2137.
[31] TACHIKAWA T,YAMASHITA S,MAJIMA T.Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis[J]. Journal of the American Chemical Society,2011,133(18):7197-7204.
[32] D'ARIENZO M,CARBAJO J,BAHAMONDE A,et al.Photogenerated defects in shape-controlled TiO2 anatase nanocrystals:A probe to evaluate the role of crystal facets in photocatalytic processes[J]. Journal of the American Chemical Society,2011,133(44):17652-17661.
[33] YU J,LOW J,XIAO W,et al.Enhanced photocatalytic CO2-Reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J]. Journal of the American Chemical Society,2014,136(25):8839-8842.
[34] LINIC S,CHRISTOPHER P,INGRAM D B.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials,2011,10(12):911-921.
[35] ZHOU X,LIU G,YU J,et al.Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light[J]. Journal of Materials Chemistry,2012,22(40):21337-21354.
[36] YU J,DAI G,HUANG B.Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays[J]. Journal of Physical Chemistry C,2009,113(37):16394-16401.
[37] TANAKA A,SAKAGUCHI S,HASHIMOTO K,et al.Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light[J]. ACS Catalysis,2013,3(1):79-85.
[38] WU X F,SONG H Y,YOON J M,et al.Synthesis of core-shell Au@TiO2 nanopartides with truncated wedge-shaped morphology and their photocatalytic properties[J]. Langmuir,2009,25(11):6438-6447.
[39] ZHU S,LIANG S,GU Q,et al.Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental,2012,119-120:146-155.
[40] TSUKAMOTO D,SHIRAISHI Y,SUGANO Y,et al.Gold nanoparticles located at the interface of anatase/rutile TiO 2 particles as active plasmonic photocatalysts for aerobic oxidation[J]. Journal of the American Chemical Society,2012,134(14):6309-6315.
[41] SEH Z W,LIU S,LOW M,et al.Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation[J]. Advanced Materials,2012,24(17):2310-2314.
[42] LEE K,HAHN R,ALTOMARE M,et al.Intrinsic Au decoration of growing TiO2 nanotubes and formation of a high-efficiency photocatalyst for H2 production[J]. Advanced Materials,2013,25(42):6133-6137.
[43] DINH C T,YEN H,KLEITZ F,et al.Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie-International Edition,2014,53(26):6618-6623.
[44] ISMAIL A A,BAHNEMANN D W,BANNAT I,et al.Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies[J]. Journal of Physical Chemistry C,2009,113(17):7429-7435.
[45] ZHANG N,LIU S,FU X,et al.Synthesis of M@TiO2 (M=Au,Pd,Pt) core-shell nanocomposites with tunable photoreactivity[J]. Journal of Physical Chemistry C,2011,115(18):9136-9145.
[46] OROS-RUIZ S,G MEZ R,L PEZ R,et al.Photocatalytic reduction of methyl orange on Au/TiO2 semiconductors[J]. Catalysis Communications,2012,21:72-76.
[47] LU Y,YU H,CHEN S,et al.Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis[J]. Environmental Science and Technology,2012,46(3):1724-1730.
[48] LIU L,OUYANG S H,YE J.Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance[J]. Angewandte Chemie-International Edition,2013,52(26):6689-6693.
[49] BIAN Z,TACHIKAWA T,ZHANG P,et al.Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity[J]. Journal of the American Chemical Society,2014,136(1):458-465.
[50] ZHANG Z,WANG Z,CAO S W,et al.Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion[J]. Journal of Physical Chemistry C,2013,117(49):25939-25947.
[51] ZHOU N,POLAVARAPU L,GAO N,et al.TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation[J]. Nanoscale,2013,5(10):4236-4241.
[52] HORIGUCHI Y,KANDA T,TORIGOE K,et al.Preparation of gold/silver/titania trilayered nanorods and their photocatalytic activities[J]. Langmuir,2014,30(3):922-928.
[53] QIAN K,SWEENY B C,JOHNSTON-PECK A C,et al.Surface plasmon-driven water reduction:Gold nanoparticle size matters[J]. Journal of the American Chemical Society,2014,136(28):9842-9845.
[54] DUCHENE J S,SWEENY B C,JOHNSTON-PECK A C,et al.Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis[J]. Angewandte Chemie-International Edition,2014,53(30):7887-7891.
[55] BIAN Z,TACHIKAWA T,KIM W,et al.Superior electron transport and photocatalytic abilities of metal-nanoparticle-loaded TiO2 superstructures[J]. Journal of Physical Chemistry C,2012,116(48):25444-25453.
[56] REISS P,PROTI RE M,LI L。Core/shell semiconductor nanocrystals[J]. Small,2009,5(2):154-168.
[57] JIANG R,LI B,FANG C,et al.Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Advanced Materials,2014,26(31):5274-5309.
[58] MURPHY C J,GOLE A M,STONE J W,et al.Gold nanoparticles in biology:Beyond toxicity to cellular imaging[J]. Accounts of Chemical Research,2008,41(12):1721-1730.
[59] QU Y,CHENG R,SU Q,et al.Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods[J]. Journal of the American Chemical Society,2011,133(42):16730-16733.
[60] SEH Z W,LIU S,ZHANG S Y,et al.Anisotropic growth of titania onto various gold nanostructures:Synthesis,theoretical understanding,and optimization for catalysis[J]. Angewandte Chemie-International Edition,2011,50(43):10140-10143.
[61] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[62] XIANG Q,YU J,JARONIEC M.Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews,2012,41(2):782-796.
[63] WILLIAMS G,SEGER B,KAMAT P V.TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano,2008,2(7):1487-1491.
[64] KAMAT P V.Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support[J]. Journal of Physical Chemistry Letters,2010,1(2):520-527.
[65] ZHANG H,LV X,LI Y,et al.P25-graphene composite as a high performance photocatalyst[J]. ACS Nano,2010, 4(1):380-386.
[66] DU J,LAI X,YANG N,et al.Hierarchically ordered macro-mesoporous TiO2-graphene composite films:Improved mass transfer,reduced charge recombination,and their enhanced photocatalytic activities[J]. ACS Nano,2011,5(1):590-596.
[67] AKHAVAN O,GHADERI E.Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation[J]. Journal of Physical Chemistry C,2009,113(47):20214-20220.
[68] ZHANG X Y,LI H P,CUI X L,et al.Graphene/TiO2 nanocomposites:synthesis,characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry,2010,20(14):2801-2806.
[69] SHEN J,YAN B,SHI M,et al.One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J]. Journal of Materials Chemistry,2011,21(10):3415-3421.
[70] LAMBERT T N,CHAVEZ C A,HERNANDEZ-SANCHEZ B,et al.Synthesis and characterization of titania-graphene nanocomposites[J]. Journal of Physical Chemistry C,2009,113(46):19812-19823.
[71] DING S,CHEN J S,LUAN D,et al.Graphene-supported anatase TiO2 nanosheets for fast lithium storage[J]. Chemical Communications,2011,47(20):5780-5782.
[72] FAN W,LAI Q,ZHANG Q,et al.Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution[J]. Journal of Physical Chemistry C,2011,115(21):10694-10701.
[73] LEE J S,YOU K H,PARK C B.Highly photoactive,low bandgap TiO2 nanoparticles wrapped by graphene[J]. Advanced Materials,2012,24(8):1084-1088.
[74] ZHANG Z,XIAO F,GUO Y,et al.One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities[J]. ACS Applied Materials and Interfaces,2013,5(6):2227-2233.
[75] HUANG J,LIU W,WANG L,et al.Bottom-up assembly of hydrophobic nanocrystals and graphene nanosheets into mesoporous nanocomposites[J]. Langmuir,2014,30(15):4434-4440.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[5] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[6] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[7] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[8] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[9] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[10] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[11] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[12] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[13] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[14] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[15] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持