Deformation Micro-mechanism of AZ31 Mg Alloy During Tension at Room Temperature by EBSD In-situ Tracking
SONG Guang-sheng1, CHEN Qiang-qiang1, XU Yong2, LI Juan2, ZHANG Shi-hong2
1. College of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036, China;
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract:In-situ tracking on grain orientation evolution of AZ31 Mg alloy rolled sheet during tension along rolling direction at room temperature was conducted by the electron backscatter diffraction technique, and activations of slip systems and twinning during former deformation were analyzed. Analysis results show that, former deformation is accomplished mainly by 〈a〉 basal and prismatic slip activations, and there are not obvious changes for grain orientation, numerous 〈a〉 dislocation slip activations obviously increase the percentage of low angle grain boundaries. For extension twins within grain, they are activated in the process of specimen tension, but not in the process of unloading after tension.
[1] 陈振华,严红革,陈吉华,等. 镁合金[M]. 北京:化学工业出版社,2004.202-205.
[2] LOU X Y, LI M, BOGER R K, et al. Hardening evolution of AZ31B Mg sheet[J]. International Journal of Plasticity,2007,23(1):44-86.
[3] 张丁非,戴庆伟,胡耀波,等. 镁合金板材轧制成型的研究进展[J]. 材料工程,2009,(10):85-90. ZHNG D F, DAI Q W, HU Y B, et al. Progress in the research on rolling formation of magnesium alloy sheet[J]. Journal of Materials Engineering,2009,(10):85-90.
[4] MARTIN E, CAPOLUNGO L, JIANG L, et al. Variant selection during secondary twinning in Mg-3%Al[J]. Acta Materialia, 2010,58(11):3970-3983.
[5] 罗晋如,刘庆,刘伟,等. AZ31镁合金板轧制过程中的{1011}-{1012}双孪生对板材组织、织构、力学性能的影响[J]. 金属学报,2011,47(12):1567-1574. LUO J R, LIU Q, LIU W, et al. The effect of {1011}-{1012} double twinning on the microstructure, texture and mechanical properties of AZ31 magnesium alloy sheet during rolling deformation[J]. Acta Metallurgica Sinica,2011,47(12):1567-1574.
[6] 李章刚. 镁合金板材的室温塑性变形机制研究[D]. 沈阳:中国科学院金属研究所,2007.54-56.
[7] YIN S, WANG C, DIAO Y, et al. Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy[J]. Journal of Materials Science and Technology,2011,27(1):29-34.
[8] AGNEW S,YOO M,TOME C.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia,2001,49(20):4277-4289.
[9] XIN Y C, JIANG J, CHAPUIS A, et al. Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression[J]. Materials Science and Engineering:A,2012,532:50-57.
[10] PEI Y, GODFREY A, JIANG J, et al. Extension twin variant selection during uniaxial compression of a magnesium alloy[J]. Materials Science and Engineering:A,2012,550(30):138-145.
[11] 陈振华,夏伟军,程永奇,等.镁合金织构与各向异性[J]. 中国有色金属学报,2005,15(1):1-11. CHEN Z H, XIA W J, CHENG Y Q, et al. Texture and anisotropy of magnesium alloys[J]. The Chinese Journal of Nonferrous Metals,2005,15(1):1-11.
[12] KESHAVARZ Z, BARNETT M R. In-situ investigation of twinning behaviour in Mg-3Al-1Zn[J]. Journal of Metals,2004,56:87-91.
[13] BARNEET M, KESHAVARZ Z, NAVE M. Microstructural features of rolled Mg-3Al-1Zn[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2005,36:1697-1702.
[14] LI H, BOEHLERT C, BIELER T, et al. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn(wt%) using in-situ SEM experiments[J]. Philosophical Magazine,2012,92(23):2923-2946.
[15] BOEHLERT C, CHEN Z, GUTIE I, et al. In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31[J].Acta Materialia,2012,60:1889-1904.
[16] BOEHLERT C, CHEN Z, CHAKKEDATH A E. In situ analysis of the tensile deformation mechanisms in extruded Mg-1Mn-1Nd(wt%)[J]. Philosophical Magazine,2013,93(6):598-617.
[17] KESHAVARZ Z, MATTHEW R. EBSD analysis of deformation modes in Mg-3Al-1Zn[J].Scripta Materialia,2006,55:915-918.
[18] KOIKE J, KOBAYASHI T, MUKAI T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J]. Acta Materialia,2003,51:2055-2065.
[19] KOIKE J, OHYAMA R. Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature[J]. Acta Materialia,2005,53:1963-1972.
[20] BOEHLERT C, CHEN Z, GUTIERREZ I, et al. In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31[J]. Acta Materialia,2012,60(4):1889-1904.
[21] 黄洪涛,ANDREW G,刘伟,等. 多向压缩路径下AZ31镁合金孪生行为的EBSD研究[J]. 电子显微学报,2011,30(4-5):294-298. HUANG H T, ANDREW G, LIU W, et al. Study on twinning behaviors of during multi-directional compressions for AZ31 magnesium alloy by EBSD[J]. Journal of Chinese Electron Microscopy Society,2011,30(4-5):294-298.
[22] 江海涛,段晓鸽,蔡正旭,等.异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J].材料工程,2015,43(8):7-12. JIANG H T, DUAN X G, CAI Z X, et al. Superplastic process and deformation mechanism of asymmetrically rolled AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2015,43(8):7-12.
[23] 刘守法,周兆锋,李春风.热输入对AZ31镁合金FSP试样力学性能的影响[J].航空材料学报,2015,35(1):39-44. LIU S F, ZHOU Z F, LI C F. Effects of heat input on mechanical properties of AZ31 Mg alloy fabricated by FSP[J]. Journal of Aeronautical Materials,2015,35(1):39-44.
[24] SRINIVASARAO B, DUDAMELL N, PEREZ M. Texture analysis of the effect of non-basal slip systems on the dynamic recrystallization of the Mg alloy AZ31[J]. Materials Characterization,2013,75:101-107.