Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (4): 20-25    DOI: 10.11868/j.issn.1001-4381.2016.04.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
多壁碳纳米管增强铝基复合材料的高温力学性能
刘强1, 柯黎明1,2, 刘奋成2, 黄春平2
1. 西北工业大学 凝固技术国家重点实验室, 西安 710072;
2. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063
High Temperature Mechanical Properties of Aluminum Matrix Composites Reinforced by Multi-walled Carbon Nanotubes
LIU Qiang1, KE Li-ming1,2, LIU Fen-cheng2, HUANG Chun-ping2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2. National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(6205 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用搅拌摩擦加工技术制备不同含量多壁碳纳米管增强铝基复合材料,并对复合材料高温力学性能进行研究。结果表明:多壁碳纳米管的添加使得铝基体材料微观组织更加细小,并形成了少量纳米晶;铝基体中有较高密度位错,并在局部呈位错缠结状分布。与未添加多壁碳纳米管的铝基体相比,复合材料的高温拉伸强度明显增强,且随着碳纳米管含量的增加,复合材料强度逐渐提高,而高温塑性不断降低,350℃时,6.6%(体积分数)MWCNTs/Al复合材料的抗拉强度达到78MPa,为未添加多壁碳纳米管铝基材强度的3.9倍;断口分析表明,随着测试温度的提高,韧窝逐渐变小,呈脆性断裂特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘强
柯黎明
刘奋成
黄春平
关键词 搅拌摩擦加工多壁碳纳米管高温强度高温塑性    
Abstract:Aluminum matrix composites reinforced by different contents of multi-walled carbon nanotubes(MWCNTs) were fabricated by friction stir processing(FSP), and their high temperature mechanical properties and strengthening mechanism were studied. The results indicate that by adding MWCNTs, the microstructure of the composites becomes finer, and a small amount of nanocrystals and tangled dislocations are brought into the aluminum matrix. Compared with the aluminum matrix, the strength of the composites at high temperature is enhanced significantly through adding MWCNTs. The strength of the composites is improved gradually, as the MWCNTs content increases, on the contrary, the plasticity of the composites decreases constantly. When the test temperature is 350℃, the tensile strength of 6.6%(volume fraction) MWCNTs/Al composite is up to 78MPa, which is 3.9 times of aluminum matrix without adding MWCNTs. The dimples of composites fracture gradually decreases, exhibits brittle fracture, as the testing temperature increases.
Key wordsfriction stir processing    multi-walled carbon nanotube    high temperature strength    high temperature plasticity
收稿日期: 2015-08-06      出版日期: 2016-04-19
中图分类号:  TB331  
通讯作者: 柯黎明(1961-),男,博士,教授,博士生导师,研究方向:特种连接技术、新材料制备技术,联系地址:江西省南昌市丰和南大道696号南昌航空大学航制学院M栋(330063)     E-mail: liming_ke@126.com
引用本文:   
刘强, 柯黎明, 刘奋成, 黄春平. 多壁碳纳米管增强铝基复合材料的高温力学性能[J]. 材料工程, 2016, 44(4): 20-25.
LIU Qiang, KE Li-ming, LIU Fen-cheng, HUANG Chun-ping. High Temperature Mechanical Properties of Aluminum Matrix Composites Reinforced by Multi-walled Carbon Nanotubes. Journal of Materials Engineering, 2016, 44(4): 20-25.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.04.004      或      http://jme.biam.ac.cn/CN/Y2016/V44/I4/20
[1] BAUGHMAN R H,ZAKHIDOV A A,HEER W A. Carbon nanotubes-the route towards applications[J].Science,2002,297(5582):787-792.
[2] BAKSHI S R,AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon,2011,49(2):533-544.
[3] HOYD D J. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews,1994,39(1):1-2.
[4] BAKSHI S R,LAHIRI D,AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews,2010,55:41-64.
[5] KWON H,ESTILI M,TAKAGI K,et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon,2009,47(3):570-577.
[6] 孙彦波,马凤梅,肖文龙,等. Ti-Al系金属间化合物基叠层结构材料的制备技术与组织性能特征[J].航空材料学报,2014,34(4):98-111. SUN Y B,MA F M,XIAO W L,et al. Preparation and performance characteristics for multilayered Ti-Al intermetallics alloys[J].Journal of Aeronautical Materials,2014,34(4):98-111.
[7] MA Z Y,SHARMA S R,MISHRA R S,et al. Microstructural modification of cast aluminum alloys via friction stir processing[J]. Materials Science Forum,2003,426-432:2891-2896.
[8] KWON Y,SAITO N,SHIGEMATSU I. Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy[J]. Journal of Materials Science Letter,2002,21(19):1473-1476.
[9] 涂文斌,柯黎明,徐卫平. 搅拌摩擦加工制备MWCNTs/Al复合材料显微结构及硬度[J]. 复合材料学报,2011,28(6):142-147. TU W B,KE L M,XU W P.Microstructure and hardness of MWCNTs/Al composite by friction stir processing[J]. Acta Materiae Compositae Sinica,2011,28(6):142-147.
[10] 赵霞,柯黎明,徐卫平,等. 搅拌摩擦加工法制备碳纳米管增强铝基复合材料[J]. 复合材料学报,2011,28(2):185-190. ZHAO X, KE L M,XU W P,et al. Friction stir processing preparation of carbon nanotubes reinforced aluminum matrix composites[J]. Acta Materiae Compositae Sinica,2011,28(2):185-190.
[11] LIU Z Y,XIAO B L. Singly dispersed carbon nanotube/aluminum composites fabricated by power metallurgy combined with friction stir processing[J]. Carbon,2012,50(5):1843-1852.
[12] MISHRA R S,MA Z Y,CHARIT I. Friction stir processing:a novel technique for fabrication of surface composite[J]. Materials Science and Engineering:A,2003,341(1-2):307-310.
[13] KWON Y,SAITO N,SHIGEMATSU I. Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy[J]. Journal of Materials Science Letter,2002,21(19):1473-1476.
[14] 刘猛,白书欣,李顺,等.界面设计对Sip/Al复合材料组织和性能的影响[J].材料工程,2014,(8):61-66. LIU M,BAI S X,LI S,et al. Effects of interface design on microstructure and properties of Sip/Al composites[J].Journal of Materials Engineering,2014,(8):61-66.
[15] GEORGE R,KASHYAP K T,RAHUL R,et al. Strengthening in carbon nanotube/aluminium(CNT/Al) composites[J]. Scripta Materialia,2005,53(10):1159-1163.
[16] 李铮,蔡晓兰,周蕾,等. CNTs/Al5083复合材料力学性能及增强机制[J].材料工程,2015,43(8):1-6. LI Z,CAI X L,ZHOU L,et al. Mechanical property and enhancement mechanism of aluminum 5083 composites with carbon nanotues[J].Journal of Materials Engineering,2015,43(8):1-6.
[17] CI L,RYU Z,JIN-PHILLIPPN N Y. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum[J]. Acta Materialia,2006,54(20):5367-5375.
[18] 张迪,郑锡涛,孙颖,等.三维编织与复合材料力学性能对比试验[J].航空材料学报,2015,35(3):89-96. ZHANG D, ZHENG X T,SUN Y,et al.Comparative investigation of mechanical properties between 3D braided and laminated composites[J]. Journal of Aeronautical Materials,2015,35(3):89-96.
[19] ZHONG R,CONG H,HOU P. Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes[J]. Carbon,2003,41(4):848-851.
[1] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[2] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[3] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[4] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[5] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[6] 马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
[7] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[8] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[9] 代士维, 张乐天, 李俊, 乔新峰, 马跃. 蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响[J]. 材料工程, 2015, 43(10): 7-13.
[10] 李文龙, 夏春, 邢丽, 柯黎明. 搅拌针形状对搅拌摩擦加工制备CNTs/铝基复合材料均匀性的影响[J]. 材料工程, 2014, 0(1): 75-78,84.
[11] 郭伟玲, 李恩重, 王海斗, 杨大祥. MWCNTs催化Ru(bpy)32+阴极电致化学发光[J]. 材料工程, 2013, 0(12): 63-67,73.
[12] 李建华, 吴开明, 邱金鳌. 预应变对Nb微合金化09MnNiDR低温钢高温塑性的影响[J]. 材料工程, 2012, 0(11): 82-85,91.
[13] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[14] 姚建省, 李志宏, 唐定中, 刘晓光, 肖克. Al2O3粉粒度对硅溶胶涂料及陶瓷型壳性能的影响[J]. 材料工程, 2009, 0(7): 23-27.
[15] 杨春巍, 胡信国, 张亮, 戴长松. 多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响[J]. 材料工程, 2008, 0(7): 79-82,87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn