Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (4): 39-44    DOI: 10.11868/j.issn.1001-4381.2016.04.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究
吴贺君1, 卢灿辉2, 李庆业2, 胡彪1
1. 四川农业大学 食品学院, 四川 雅安 625000;
2. 四川大学 高分子材料工程国家重点实验室, 成都 610065
Aluminum Filled Polyethylene-based Thermally Conductive High Performance Composites Prepared by Solid State Shear Milling
WU He-jun1, LU Can-hui2, LI Qing-ye2, HU Biao1
1. College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, China;
2. State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
全文: PDF(4110 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用固相剪切碾磨法(S3M)制备铝粉和线性低密度聚乙烯(LLDPE)的复合粉体,再经熔融加工获得高性能LLDPE/Al导热复合材料。借助扫描电镜(SEM)、激光粒度分析仪等表征铝粉在基体中的微观形态和分散状态,同时研究LLDPE/Al复合材料的热导率、力学性能和热稳定性。结果表明:固相剪切碾磨过程中铝粉受磨盘挤压、拉伸、摩擦剪切等复合力场作用,由较小球形颗粒变为较大片状,同时在基体中均匀分散且界面结合得以增强,因此复合材料拥有更高的热导率、更好的力学性能和热稳定性。当铝粉填充质量分数为80%时,经固相剪切碾磨10次制备的复合材料热导率高达8.782W·m-1·K-1,拉伸强度和弯曲强度分别为33.00MPa和31.16MPa,初始分解温度比基体提高约13℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴贺君
卢灿辉
李庆业
胡彪
关键词 固相剪切碾磨聚乙烯铝粉热导率力学性能    
Abstract:Solid state shear milling(S3M) followed by melt mixing process was applied to prepare linear low-density polyethylene(LLDPE)/aluminum(Al) composites with high performance. The morphological change of Al particulates during S3M was characterized by scanning electron microscope(SEM) and laser scattering particle analyzer. The thermal conductivity, mechanical properties and thermal stability of the LLDPE/Al composites were investigated. The results indicate that, under the complex combination of shearing, compression, stretching and friction actions, the spherical Al particulates are squeezed into flakes during compounding with LLDPE by S3M, and their dispersion and interfacial adhesion are improved as well, leading to significance properties enhancement of the resulting composites. At 80%(mass fraction) filler loading, thermal conductivity of the composite prepared by S3M for 10 cycles is as high as 8.782W·m-1·K-1, and the tensile strength and flexural strength respectively are 33.00MPa and 31.16MPa. Moreover, a significant increase of 13℃ in the onset decomposition temperature of degradation is observed, which suggests that the thermal stability of the composite prepared by S3M is also improved.
Key wordssolid state shear milling    polyethylene    aluminum    thermal conductivity    mechanical property
收稿日期: 2015-04-01      出版日期: 2016-04-19
中图分类号:  TQ325.1+2  
  TQ327.8  
通讯作者: 吴贺君(1985-),男,博士,讲师,从事专业:高分子及其复合材料加工制备和循环利用,联系地址:四川省雅安市雨城区新康路46号四川农业大学食品学院包装工程系8教307室(625000)     E-mail: hejunwu520@163.com
引用本文:   
吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
WU He-jun, LU Can-hui, LI Qing-ye, HU Biao. Aluminum Filled Polyethylene-based Thermally Conductive High Performance Composites Prepared by Solid State Shear Milling. Journal of Materials Engineering, 2016, 44(4): 39-44.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.04.007      或      http://jme.biam.ac.cn/CN/Y2016/V44/I4/39
[1] 马传国,容敏智,章明秋. 导热高分子复合材料的研究与应用[J]. 材料工程,2002,(7):40-45. MA C G,RONG M Z,ZHANG M Q. Advances in study of thermal conducting polymers composites and their application[J]. Journal of Materials Engineering,2002,(7):40-45.
[2] 范伟,冯刚,赵加伟. 导热高分子复合材料的研究与应用进展[J]. 工程塑料应用,2011,39(12):101-104. FAN W,FENG G,ZHAO J W. Research and application development of thermal conductivity polymer composites[J]. Engineering Plastics Application,2011,39(12):101-104.
[3] HAN Z,FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J]. Progress in Polymer Science,2011,36(7):914-944.
[4] 李侃社,王琪. 导热高分子材料研究进展[J]. 功能材料,2002,33(2):135-144. LI K S,WANG Q. Advances in thermal conductive polymeric materials[J]. Journal of Functional Materials,2002,33(2):135-144.
[5] TAVMAN I H. Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites[J]. Journal of Applied Polymer Science,1996,62(12):2161-2167.
[6] ZHOU W. Thermal and dielectric properties of the aluminum particle reinforced linear low-density polyethylene composites[J]. Polymer Engineering and Science,2011,51(5):917-924.
[7] 王锴,马海红,孙海燕,等. 抗静电导热PP/Al复合材料的制备与性能[J]. 塑料,2012,41(6):29-31. WANG K,MA H H,SUN H Y,et al. Preparation and property of anti-static electricity and thermal conductive polypropylene/aluminum powder composite[J]. Plastics,2012,41(6):29-31.
[8] BISHAY I K,ABD-EL-MESSIEH S L,MANSOUR S H. Electrical,mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder[J]. Materials and Design,2011,32(1):62-68.
[9] 徐僖,王琪. 力化学反应器[P].中国专利:ZL95111258.9,2001-04-10.
[10] TEKCE H S,KUMLUTAS D,TAVMAN I H. Effect of particle shape on thermal conductivity of copper reinforced polymer composites[J]. Journal of Reinforced Plastics and Composites,2007,26(1):113-121.
[11] 舒畅,谢光荣,曾鹏. 不同球磨介质在片状铝粉制备过程中的作用研究[J]. 粉末冶金工业,2010,20(4):10-14. SHU C,XIE G R,ZENG P. The effects of different ball milling mediums on the fabrication of aluminum flake powder[J]. Powder Metallurgy Industry,2010,20(4):10-14.
[12] 黄兴,陈英红,王琪. 固相剪切碾磨法制备共聚聚丙烯/纳米二氧化硅复合材料的界面性能[J]. 塑料,2009,38(5):5-7. HUANG X,CHEN Y H,WANG Q. The interfacial interaction of copolymerized polypropylene/nano-SOi2 composite prepared by solid state shear milling[J]. Plastics,2009,38(5):5-7.
[13] SHAO W,WANG Q,WANG F,et al. The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state[J]. Carbon,2006,44(13):2708-2714.
[14] 卢灿辉. 聚丙烯-铁-废旧橡胶的碾磨粉碎应力诱导效应及复合材料的研究[D]. 成都:四川大学,2002.
[15] WU H,DRZAL L T. High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating:effect of percolation and particle size[J]. Polymer Composites,2013,34(12):2148-2153.
[16] KRUPAR I,NOVAK I,CHODAK I. Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties[J]. Synthetic Metals,2004,1459(2-3):245-252.
[17] WU H,SUN X,ZHANG W,et al. Effect of solid-state shear milling on the physicochemical properties of thermally conductive low-temperature expandable graphite/low-density polyethylene composites[J]. Composites Part A:Applied Science and Manufacturing,2013,55(6):27-34.
[18] PALZA H,VERGARA R,ZAPATA P. Composites of polypropylene melt blended with synthesized silica nanoparticles[J]. Composites Science and Technology,2011,71(4):535-540.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 赵晓燕, 黄晨, 张帅, 汪称意. 壳聚糖/聚乙烯醇过滤膜的制备及其性能表征[J]. 材料工程, 2020, 48(7): 176-183.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[15] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn