Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (5): 8-14    DOI: 10.11868/j.issn.1001-4381.2016.05.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图
袁武华1,*(), 龚雪辉1,2, 孙永庆2, 梁剑雄2
1 湖南大学 材料科学与工程学院, 长沙 410082
2 钢铁研究总院 特殊钢研究所, 北京 100081
Hot Deformation Behavior and Processing Map of 0Cr16Ni5Mo Low Carbon Martensitic Stainless Steel
Wu-hua YUAN1,*(), Xue-hui GONG1,2, Yong-qing SUN2, Jian-xiong LIANG2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 Institute for Special Steel, Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(6521 KB)   HTML ( 28 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在Gleeble-3800 热模拟试验机上进行高温压缩实验, 研究 0Cr16Ni5Mo低碳马氏体不锈钢在变形温度为900~1150℃、应变速率为0.01~10s-1条件下的热变形行为。采用双曲正弦模型确定了该材料的热变形参数随应变量的变化规律,建立了相应的热变形本构方程。根据动态材料模型建立并分析了其热加工图,同时观察了变形组织。结果表明:在热压缩过程中, 流变应力随变形温度的升高而降低,随应变速率的升高而增加,变形条件对材料的组织结构有较大影响。材料热变形参数与应变量之间可采用四次函数关系式表示,并且具有很好的相关性,获得了该材料的最佳热变形工艺参数范围为:变形温度980~1150℃,应变速率0.01~0.2s-1

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁武华
龚雪辉
孙永庆
梁剑雄
关键词 0Cr16Ni5Mo马氏体不锈钢流变应力本构模型动态再结晶热加工图    
Abstract

The hot deformation behavior of 0Cr16Ni5Mo low carbon martensitic stainless steel was studied by the isothermal compression of cylindrical specimens at 900-1150℃ with the strain rate of 0.01-10s-1 on a Gleeble-3800 simulated machine. The relations of the thermomechanical parameters with strain were obtained using the hyperbolic-sine mathematics model and the hot deformation constitutive relationship was established. Processing map was also established based on the dynamic materials model. The microstructure evolution at different conditions was analyzed. The results show that the flow stress decreases with the increase of deformation temperature and increases with the increase of strain rate, the deformation condition has a great influence on the material microstructure. The relationship between deformation parameters and strain have a good relativity, which can be expressed using four polynomial fitting. An optimum processing parameters of hot deformation for this steel can also be obtained by the maps, in which the hot temperature is 980-1150℃ and the strain rate is 0.01-0.2s-1.

Key words0Cr16Ni5Mo martensitic stainless steel    flow stress    constitutive model    dynamic recrystallization    processing map
收稿日期: 2014-09-16      出版日期: 2016-05-19
中图分类号:  TG142.71  
通讯作者: 袁武华     E-mail: yuan46302@163.com
作者简介: 袁武华(1973-),男,教授,博士,主要从事金属与金属基复合材料相关方面研究,联系地址:湖南省长沙市岳麓区湖南大学材料科学与工程学院(410082),E-mail:yuan46302@163.com
引用本文:   
袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
Wu-hua YUAN, Xue-hui GONG, Yong-qing SUN, Jian-xiong LIANG. Hot Deformation Behavior and Processing Map of 0Cr16Ni5Mo Low Carbon Martensitic Stainless Steel. Journal of Materials Engineering, 2016, 44(5): 8-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.002      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/8
Fig.1  试样固溶热处理后显微组织
Fig.2  0Cr16Ni5Mo马氏体不锈钢应力-应变曲线 (a)=0.01s-1;(b)=0.1s-1;(c)=1s-1;(d)=10s-1
Fig.3  0Cr16Ni5Mo不锈钢峰值应力与变形速率 (a)和变形温度 (b)的关系(ε=0.4)
Fig.4  0Cr16Ni5Mo不锈钢峰值应力与Z参数的关系(ε=0.4)
Fig.5  0Cr16Ni5Mo不锈钢材料参数与应变量之间的变化关系 (a)α-ε;(b)n-ε;(c)Q-ε;(d)lnA-ε
Fig.6  0Cr16Ni5Mo不锈钢的热加工图 (a)ε=0.6;(b)ε=0.8
Fig.7  不同变形条件下0Cr16Ni5Mo不锈钢的典型热变形组织 (a)T=900℃,=0.01s-1;(b) T=900℃,=10s-1;(c) T=950℃,=0.1s-1;(d)T=1100℃,=0.1s-1;(e)T=1100℃,=1s-1;(f)T=1150℃,=0.01s-1
1 QIN B , WANG Z Y , SUN Q S . Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel[J]. Materials Characterization, 2008, 59 (8): 1096- 1100.
2 MA X P , WANG L J , QIN B , et al. Effect of N on microstructure and mechanical properties of 16Cr5Ni1Mo martensitic stainless steel[J]. Materials and Design, 2012, 34, 74- 81.
3 DAWOOD M A , MAHALLAWI IS E , AZIM ME A , et al. Thermal aging of 16Cr-5Ni-1Mo stainless steel: part 1-microstructural analysis[J]. Materials Science and Technology, 2004, 20 (3): 363- 369.
4 WANG Z H , FU W T , WANG B Z , et al. Study on hot deformation characteristics of 12%Cr ultra-super-critical rotor steel using processing maps and Zener-Hollomon parameter[J]. Materials Characterization, 2010, 61 (1): 25- 30.
5 俞秋景, 张伟红, 于连旭, 等. 铸态Inconel 625合金热加工图的建立及热变形机制分析[J]. 材料工程, 2014, (1): 30- 34.
5 YU Qiu-jing , ZHANG Wei-hong , YU Lian-xu , et al. Development of thermal processing map and analysis of hot deformation mechanism of cast alloy Inconel 625[J]. Journal of Materials Engineering, 2014, (1): 30- 34.
6 熊毅, 熊良银, 张凌峰, 等. GH4199合金的热变形行为与微观组织演变[J]. 中国有色金属学报, 2010, 20 (4): 655- 661.
6 XIONG Yi , XIONG Liang-yin , ZHANG Ling-feng , et al. Hot deformation behavior and microstructure evolution of superalloy GH4199[J]. The Chinese Journal of Nonferrous Metals, 2010, 20 (4): 655- 661.
7 张威, 闫东娜, 邹德宁, 等. 超低碳13Cr-5Ni-2Mo马氏体不锈钢热变形行为及本构关系[J]. 钢铁, 2012, 47 (5): 69- 74.
7 ZHANG Wei , YAN Dong-na , ZOU De-ning , et al. Hot deformation behavior and constitutive relationship for super-low 13Cr-5Ni-2Mo martensitic stainless steel[J]. Iron and Steel, 2012, 47 (5): 69- 74.
8 吴凯, 刘国权, 胡本芙, 等. 新型镍基粉末高温合金的高温变形行为[J]. 航空材料学报, 2010, 30 (4): 1- 7.
8 WU Kai , LIU Guo-quan , HU Ben-fu , et al. Research on high temperature deformation behavior of new type nickel-based P/M superalloy[J]. Journal of Aeronautical Materials, 2010, 30 (4): 1- 7.
9 孙朝阳, 刘金榕, 李瑞, 等. Incoloy 800H高温变形流动应力预测模型[J]. 金属学报, 2011, 47 (2): 191- 196.
9 SUN Chao-yang , LIU Jin-rong , LI Rui , et al. Constitutive modeling for elevated temperature flow behavior of Incoloy 800H superalloy[J]. Acta Metallurgica Sinica, 2011, 47 (2): 191- 196.
10 王智祥, 刘雪峰, 谢建新. AZ91镁合金高温变形本构关系[J]. 金属学报, 2008, 44 (11): 1378- 1383.
10 WANG Zhi-xiang , LIU Xue-feng , XIE Jian-xin . Constitutive relationship of hot deformation of AZ91 magnesium alloy[J]. Acta Metallurgica Sinica, 2008, 44 (11): 1378- 1383.
11 李波, 潘清林, 张志野, 等. 含钪Al-Zn-Mg合金的热变形行为和显微组织[J]. 材料工程, 2013, (11): 6- 11.
11 LI Bo , PAN Qing-lin , ZHANG Zhi-ye , et al. Hot deformation behavior and microstructure of Al-Zn-Mg alloy containing Sc during hot compression at elevated temperature[J]. Journal of Materials Engineering, 2013, (11): 6- 11.
12 刘娜, 李周, 袁华, 等. 粉末冶金TiAl合金的热变形行为研究[J]. 航空材料学报, 2013, 33 (5): 1- 5.
12 LIU Na , LI Zhou , YUAN Hua , et al. Hot deformation behavior of powder metallurgical TiAl alloy[J]. Journal of Aeronautical Materials, 2013, 33 (5): 1- 5.
13 黄由林, 王建波, 凌学士, 等. 热加工图理论的研究进展[J]. 材料导报, 2008, 22 (增刊3): 173- 176.
13 HUANG You-lin , WANG Jian-bo , LING Xue-shi , et al. Research development of hot processing map theory[J]. Materials Review, 2008, 22 (Suppl 3): 173- 176.
14 康娅雪, 蔡大勇, 张春玲, 等. 微碳钢的热变形方程及热加工图[J]. 材料热处理学报, 2012, 33 (6): 74- 79.
14 KANG Ya-xue , CAI Da-yong , ZHANG Chun-ling , et al. Hot deformation equation and processing map of a micro-carbon steel[J]. Transactions of Materials and Heat Treatment, 2012, 33 (6): 74- 79.
15 马龙腾, 王立民, 胡劲, 等. AISI403马氏体不锈钢的热变形特性研究[J]. 材料工程, 2013, (5): 38- 43.
15 MA Long-teng , WANG Li-min , HU Jin , et al. Hot deformation features of AISI403 martensitic stainless steel[J]. Journal of Materials Engineering, 2013, (5): 38- 43.
16 SRINIVASAN N , PRASAD Y V R K . Hot working characteristics of nimonic75, 80A and 90 superalloys: a comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51 (1-4): 171- 192.
17 PRASAD Y V R K . Processing maps:a status report[J]. Journal of Materials Engineering and Performance, 2003, 12 (6): 638- 645.
18 PRASAD Y V R K , GEGEL H L , DORAIVELU S M . Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15 (10): 1883- 1892.
19 于洋, 熊柏青, 惠松骁, 等. 铸态Ti-6Al-4V-0.1B合金的热变形行为及加工图[J]. 材料热处理学报, 2012, 33 (6): 142- 146.
19 YU Yang , XIONG Bai-qing , HUI Song-xiao , et al. Hot deformation behavior and processing map of as-cast Ti-6Al-4V-0.1B alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33 (6): 142- 146.
[1] 汪雅婷, 黎俊良, 袁楷峰, 陈广义. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022, 50(6): 170-177.
[2] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[3] 宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
[4] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[5] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[6] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[7] 王博伦, 王韬, 相宁, 葛勇, 郎建林, 孙琦伟, 陈宇宏, 颜悦. 聚碳酸酯中应变率压缩力学特性研究[J]. 材料工程, 2021, 49(12): 147-155.
[8] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
[9] 王彦菊, 李神龙, 贺炜林, 沙爱学, 贾崇林, 孟宝, 万敏. 高温合金超薄板循环塑性本构模型适用性研究[J]. 材料工程, 2021, 49(11): 147-155.
[10] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[11] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[12] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[13] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, VladimirPetrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[14] 孙挺, 闫永明, 何肖飞, 尉文超, 杜玉婧. Cr-Mo-B系机械工程用钢高温流变行为及热加工图[J]. 材料工程, 2019, 47(9): 55-60.
[15] 周峰, 王克鲁, 鲁世强, 万鹏, 陈虚怀. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019, 47(8): 141-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn