Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (5): 15-21    DOI: 10.11868/j.issn.1001-4381.2016.05.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
新型超高强度热冲压用钢的热变形行为及本构关系
张施琦1,2, 冯定1,2, 张跃3, 洪继要4
1. 非常规油气湖北省协同创新中心, 武汉 430100;
2. 长江大学 机械工程学院, 湖北 荆州 434023;
3. 北京科技大学 材料科学与工程学院, 北京 100083;
4. 汽车用钢开发与应用技术国家重点实验室(宝钢), 上海 201900
Hot Deformation Behavior and Constitutive Model of Advanced Ultra-high Strength Hot Stamping Steel
ZHANG Shi-qi1,2, FENG Ding1,2, ZHANG Yue3, HONG Ji-yao4
1. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan 430100, China;
2. School of Mechanical Engineering, Yangtze University, Jingzhou 434023, Hubei, China;
3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
4. State Key Laboratory of Development and Application Technology of Automotive Steels(Baosteel), Shanghai 201900, China
全文: PDF(1099 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用 Gleeble-1500D热模拟机对新型超高强度热冲压用钢22MnB5Nb进行等温单向拉伸实验,研究了其在变形温度为650~950℃,应变速率为0.1,1.0,10s-1下的热变形行为,并采用3种本构分析方法,即基于传统拟合回归方法的Arrhenius 型、考虑材料常数应变补偿的Arrhenius 型和本工作新提出的基于Quasi-Newton BFGS算法的Arrhenius 型本构方程来描述22MnB5Nb钢的热变形行为。结果表明:22MnB5Nb钢表现出典型的加工硬化和动态回复软化行为,变形温度与应变速率均对其流变应力有较大影响;3种方程均可以准确预测实验钢的峰值流变应力,其中,Quasi-Newton BFGS算法具有可一次性求解所有材料参数、求解步骤简单和预测精度最高(R=0.99578,Re=11.03MPa,E=2.48%)的特点,考虑材料常数应变补偿的Arrhenius 型本构方程预测精度相对较低,但能直接预测不同变形条件下的流变应力曲线且可以较好地预测变形过程中的加工硬化效应、动态回复软化效应和应变速率强化效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张施琦
冯定
张跃
洪继要
关键词 热冲压用钢热变形行为本构模型Nb    
Abstract:The hot deformation behavior of the advanced ultra-high strength hot stamping steel 22MnB5Nb was studied through the isothermal uniaxial tensile tests at 650-950℃ and strain rates of 0.1, 1.0s-1 and 10s-1 by Gleeble 1500D system. The conventional Arrhenius-type hyperbolic sine equation, the Arrhenius-type model considering the material constant strain compensation and the new Arrhenius-type model based on Quasi-Newton BFGS algorithm were established to describe the high-temperature deformation behavior of 22MnB5Nb. The results indicate that 22MnB5Nb steel shows typical work hardening and dynamic recovery softening behavior during hot tensile. And the strain rate and deformation temperature have significant effects on the flow stress. The peak flow stress values predicted by these models are highly consistent with the experimental values, and the Quasi-Newton BFGS algorithm can solve all the material parameters in one time and it is simpler in calculation process and has the highest accurate(R=0.99578, Re=11.03MPa, E=2.48%), while, the Arrhenius-type model considering material constant strain compensation with lower accuracy, but can directly predicts not only the flow stress curve under different deformation conditions, but also the work hardening behavior, the dynamic recovery behavior and the strain rate strengthening effect of the experimental steel during the deformation process.
Key wordshot stamping steel    hot deformation behavior    constitutive model    Nb
收稿日期: 2015-10-26      出版日期: 2016-05-19
中图分类号:  TG142  
通讯作者: 冯定(1963-),男,教授,博士生导师,主要从事石油机械及井下工具的设计、制造及用材方面的研究工作,联系地址:湖北省荆州市长江大学东校区机械工程学院(434023),E-mail:fengd0861@sina.com     E-mail: fengd0861@sina.com
引用本文:   
张施琦, 冯定, 张跃, 洪继要. 新型超高强度热冲压用钢的热变形行为及本构关系[J]. 材料工程, 2016, 44(5): 15-21.
ZHANG Shi-qi, FENG Ding, ZHANG Yue, HONG Ji-yao. Hot Deformation Behavior and Constitutive Model of Advanced Ultra-high Strength Hot Stamping Steel. Journal of Materials Engineering, 2016, 44(5): 15-21.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.003      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/15
[1] KARBASIAN H, TEKKAYA A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15):2103-2118.
[2] NADERI M, DURRENBERGER L, MOLINARI A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J]. Materials Science & Engineering: A, 2008, 478(1-2):130-139.
[3] LI H, HE L, ZHAO G, et al. Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson-Cook model[J]. Materials Science & Engineering: A, 2013, 580:330-348.
[4] NIKRAVESH M, NADERI M, AKBARI G H. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel[J]. Materials Science & Engineering: A, 2012, 540:24-29.
[5] NADERI M, KETABCHI M, ABBASI M, et al. Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping[J]. Journal of Materials Processing Technology, 2011, 211(6):1117-1125.
[6] ZHOU J, WANG B, HUANG M. Two constitutive descriptions of boron steel 22MnB5 at high temperature[J]. Materials & Design, 2014, 63(2):738-748.
[7] ZHANG S, HUANG Y, SUN B, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels[J]. Materials Science & Engineering: A, 2015, 626:136-143.
[8] SAMANTARAY D, MANDAL S, BHADURI A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel[J]. Materials & Design, 2010, 31(2):981-984.
[9] XIAO X, LIU G Q, HU B F, et al. A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behavior in 12Cr3WV steel[J]. Computational Materials Science, 2012, 62: 227-234.
[10] LI H Y, HU J D, WEI D D, et al. Artificial neural network and constitutive equations to predict the hot deformation behavior of modified 2.25Cr-1Mo steel[J]. Materials & Design, 2012, 42:192-197.
[11] 王进,褚忠,张琦. 38MnVS6非调质钢两种高温本构模型的对比[J]. 材料工程, 2014, (2):81-86. WANG Jin, CHU Zhong, ZHANG Qi. A comparative study of two high-temperature constitutive models of 38MnVS6 microalloyed forging steel[J]. Journal of Materials Engineering, 2014, (2): 81-86.
[12] ZENG Z, ZHANG Y, JONSSON S. Microstructure and texture evolution of commercial pure titanium deformed at elevated temperatures[J]. Materials Science & Engineering: A, 2009, 513-514:83-90.
[13] 魏海莲, 刘国权, 肖翔,等. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J]. 金属学报, 2013, 49(6):731-738. WEI Hai-lian, LIU Guo-quan, XIAO Xiang, et al. Apparent and physically based constitutive analyses for hot deformation of austenite in 35Mn2 steel[J]. Acta Metallurgica Sinica, 2013, 49(6):731-738.
[14] MIRZADEH H, CABRERA J M, PRADO J M, et al. Hot deformation behavior of a medium carbon microalloyed steel[J]. Materials Science & Engineering: A, 2011, 528:3876-3882.
[15] MEYSAMI M, MOUSAVI S. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test[J]. Materials Science & Engineering: A, 2011, 528:3049-3055.
[16] 郑漫庆, 王高潮, 喻淼真,等. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, (8):32-35. ZHENG Man-qing, WANG Gao-chao, YU Miao-zhen, et al. Superplastic constitutive relationship of TC4-DT titanium alloy with strain rate circulation method[J]. Journal of Materials Engineering, 2014, (8):32-35.
[17] ZHANG Y, MU B, ZHENG H. Link between and comparison and combination of Zhang neural network and Quasi-Newton BFGS method for time-varying quadratic minimization[J]. IEEE Trans Syst Man Cybern B Cybern, 2012, 43(2):490-503.
[18] LEITHEAD W E, ZHANG Y N. O(N2)-operation approximation of covariance matrix inverse in Gaussian process regression based on Quasi-Newton BFGS method[J]. Communications in Statistics Simulation & Computation, 2007, 36(2):367-380.
[1] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[2] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[3] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[4] 刘伟, 熊华平, 李能, 陈波. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程, 2018, 46(2): 27-33.
[5] 庞洁, 周春根. Nb-Si基合金表面Mo-Si-B涂层制备及抗氧化性能[J]. 材料工程, 2018, 46(2): 73-77.
[6] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[7] 李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018, 46(11): 148-154.
[8] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[9] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
[10] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[11] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[12] 乔瑞芳, 毕洪运, 陈玉喜. Ti,Nb和W复合强化超纯铁素体不锈钢的高温析出行为[J]. 材料工程, 2016, 44(5): 22-28.
[13] 范清松, 杨忠波, 周军, 石明华, 陈鑫, 李中奎. Zr-Sn-Nb-Fe系锆合金中第二相粒子研究进展[J]. 材料工程, 2016, 44(4): 110-118.
[14] 张爱军, 韩杰胜, 马文林, 孟军虎. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3): 1-8.
[15] 岳远杰, 唐荻, 武会宾, 梁金明, 巨彪. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn