Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (5): 29-36    DOI: 10.11868/j.issn.1001-4381.2016.05.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
核电管道不锈钢中σ相的退火消除及脆性恢复
王永强1, 李娜2, 杨滨3, 孙立2, 林苏华2
1. 安徽工业大学 材料科学与工程学院, 安徽 马鞍山 243002;
2. 安徽工业大学 冶金工程学院, 安徽 马鞍山 243002;
3. 北京科技大学 新金属材料国家重点实验室, 北京 100083
Annealing Induced Removing of σ Phase and Recovery of Embrittlement in Stainless Steel Used for Nuclear Power Plant Pipes
WANG Yong-qiang1, LI Na2, YANG Bin3, SUN Li2, LIN Su-hua2
1. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China;
2. School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China;
3. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(23175 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在获得σ相析出显著恶化核电主管道铸造奥氏体不锈钢Z3CN20.09M冲击韧性的基础上,采用等温退火、光学显微镜(OM)、扫描电镜(SEM)等研究了消除σ相的热处理工艺及机理。结果表明:850~1000℃等温退火一定时间,σ相可完全消除,此温度范围内发生σ→α转变,但退火温度越低,所需时间越长,反之越短。这是因为温度低,合金元素扩散速率低,相转变缓慢;而温度升高,合金元素扩散速率加快且相转变驱动力提高,σ相转变速率增加,转变时间缩短。综合考虑,950℃等温退火0.5h为最佳热处理工艺参数。经此工艺处理后,时效(含σ相)试样的力学性能得到完全恢复,σ相的脆化影响消除。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永强
李娜
杨滨
孙立
林苏华
关键词 铸造奥氏体不锈钢&sigma冲击韧性退火脆性恢复    
Abstract:The significant deterioration effect of σ phase precipitation on the room temperature impact toughness of Z3CN20.09M cast austenite stainless steel used for primary coolant pipe of nuclear power plant was investigated. On the base of above results, the heat treatment process and mechanism of eliminating of σ phase in stainless steel by means of isothermal annealing technology, optical microscope (OM) and scanning electron microscope (SEM) were studied.The results show that the precipitated σ phase can be completely eliminated by the transformation σ→α when the aged specimens are isothermally annealed at 850-1000℃ for a period of time, but the lower annealing temperature is, the longer time required, and vice versa.The diffusion rate of alloying elements is slow when temperature is low,so the transformation of σ phases is also slow.With the increase of temperature, the diffusion rate of alloying elements accelerates and the driving force of σ phases transformation into α phases increases, so the transformation of σ phases becomes higher,thus the transformation time is short.After comprehensive consideration,isothermal annealing at 950℃ for 0.5h is an optimum heat treatment process parameter. The mechanical property of aged Z3CN20.09M specimens after annealed at 950℃ for 0.5h can be completely recovered. The annealing process eliminates embrittlement effect of σ phase on toughness of aged Z3CN20.09M specimens.
Key wordscast austenite stainless steel    &sigma    phase    impact toughness    annealing    embrittlement recovery
收稿日期: 2015-10-26      出版日期: 2016-05-19
中图分类号:  TG142.71  
通讯作者: 王永强(1982-),男,讲师,博士,研究方向:不锈钢组织与性能,联系地址:安徽省马鞍山市雨山区马向路新城东区安徽工业大学(东校区)材料学院(243032),E-mail:yqwang@ahut.edu.cn     E-mail: yqwang@ahut.edu.cn
引用本文:   
王永强, 李娜, 杨滨, 孙立, 林苏华. 核电管道不锈钢中σ相的退火消除及脆性恢复[J]. 材料工程, 2016, 44(5): 29-36.
WANG Yong-qiang, LI Na, YANG Bin, SUN Li, LIN Su-hua. Annealing Induced Removing of σ Phase and Recovery of Embrittlement in Stainless Steel Used for Nuclear Power Plant Pipes. Journal of Materials Engineering, 2016, 44(5): 29-36.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.005      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/29
[1] YAMADA T, OKANO S,KUWANO H. Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel[J]. Journal of Nuclear Materials, 2006, 350(1): 47-55.
[2] XUE F, WANG Z X, SHU G G, et al. Thermal aging effect on Z3CN20.09M cast duplex stainless steel[J]. Nuclear Engineering and Design, 2009, 239(11): 2217-2223.
[3] KAUAGUCHI S, SAKAMOTO N, TAKANO G, et al. Microstructural changes and fracture behavior of CF8M duplex stainless steels after long-term aging[J]. Nuclear Engineering and Design, 1997, 174(3): 273-285.
[4] SEDRIKS A J. Corrosion of Stainless Steels[M]. New York: Wiley, 1979.113-115.
[5] GUNN R N. Duplex Stainless Steels: Microstructure, Properties and Applications[M]. Cambridge, England: Abington, 1997. 175.
[6] 李时磊, 王艳丽, 李树肖, 等. 长期热老化对铸造奥氏体不锈钢组织和性能的影响[J]. 金属学报, 2010, 46(10): 1186-1191. LI Shi-lei, WANG Yan-li, LI Shu-xiao, et al. Effect of long term aging on the microstructure and mechanical properties of cast austenitic stainless steels[J]. Acta Metallurgica Sinica, 2010, 46(10): 1186-1191.
[7] WANG Y Q, HAN J, WU H C, et al. Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel[J]. Nuclear Engineering and Design, 2013, 259: 1-7.
[8] 王永强, 韩军, 杨滨, 等. 核电站主管道Z3CN20.09M不锈钢中金属间相的析出行为[J]. 金属学报, 2013, 49(4): 415-420. WANG Yong-qiang, HAN Jun, YANG Bin, et al. Precipitation behavior of the intermetallic phases in Z3CN20.09M stainless steel for primary coolant pipes of nuclear[J]. Acta Metallurgica Sinica, 2013, 49(4): 415-420.
[9] 雒设计, 郑新侠. 敏化处理对2205双相不锈钢组织与力学性能的影响[J]. 材料工程,2011, (5):76-80. LUO She-ji, ZHENG Xin-xia. Effects of sensitizing treatment on microstructure and mechanical properties of 2205 duplex stainless steel[J]. Journal of Materials Engineering, 2011, (5): 76-80.
[10] LO K H, SHEK C H, LAI J K L. Recent developments in stainless steels[J]. Materials Science and Engineering: R: Reports, 2009, 65(4-6): 39-104.
[11] 赵新宝,党莹樱,尹宏飞,等. 超超临界电站用镍铁基高温合金TCP相和碳化物相析出的热力学计算[J]. 材料工程,2015, 43(5):38-43. ZHAO Xin-bao, DANG Ying-ying, YIN Hong-fei, et al. Thermodynamic calculation of precipitation of TCP phase and carbide phase of Ni-Fe base superalloys for ultra-supercritical power plants[J]. Journal of Materials Engineering, 2015, 43(5): 38-43.
[12] MAEHARA Y, OHMORI Y, MURAYAMA J, et al. Effects of alloying elements on σ phase precipitation in δ-γ duplex phase stainless steels[J]. Metal Science, 1983, 17(11): 541-548.
[13] SATO Y S, KOKAWA H. Preferential precipitation site of sigma phase in duplex stainless steel weld metal[J]. Scripta Materialia, 1999, 40(6): 659-663.
[14] SCHWIND M, KALLQVIST J, NILSSON J O, et al. σ-phase precipitation in stabilized austenitic stainless steels[J]. Acta Materialia, 2000, 48(10): 2473-2481.
[15] BADJI R, BOUABDALLAH M, BACROIX B, et al. Effect of solution treatment temperature on the precipitation kinetic of σ-phase in 2205 duplex stainless steel welds[J]. Materials Science and Engineering: A, 2008, 496(1-2): 447-454.
[16] LIN D Y, LIU G L, CHANG T C, et al. Microstructure development in 24Cr-14Ni-2Mn stainless steel after aging under various nitrogen/air ratios[J]. Journal of Alloys and Compounds, 2004, 377(1-2): 150-154.
[17] BRANDIS H, HEIMANN W, SCHMIDTMANN E. Effect of nitrogen on the precipitation behavior of steel X3CrNiMoNbN23-17[J]. TEW-Technische Berichte, 1976, 2(2): 150-166.
[18] SMUK O, NENONEN P, HANNINEN H, et al. Microstructures of a powder metallurgy-hot-isostatically pressed super duplex stainless steel forming in industrial heat treatments[J]. Metallurgical and Materials Transactions A, 2004, 35(7): 2103-2109.
[19] 王永强. 核电站主管道不锈钢中σ相析出及对力学、点蚀性能的影响[D]. 北京:北京科技大学, 2013.
[20] WONG K W, SHEKC H, ZHANG W, et al. σ phase dissolution in duplex stainless steel at elevated temperature studied by thermal analysis[J]. Materials Letter, 2008, 62(24): 3991-3994.
[21] WANG Y Q, HAN J, YANG B, et al. Strengthening of σ phase in a Fe20Cr9Ni cast austenite stainless steel[J]. Materials Characterization, 2013, 84: 120-125.
[22] MAGNABOSCO R. Kinetics of sigma phase formation in a duplex stainless steel[J]. Materials Research, 2009, 12(3): 321-327.
[23] SOUZA C Jr, ABREU H, TAVARES S, et al. The σ phase formation in annealed UNS S31803 duplex stainless steel: texture aspects[J]. Materials Characterization, 2008, 59(9): 1301-1306.
[24] ELMER J W, PALMER T A, SPECHT E D. Direct observations of sigma phase formation in duplex stainless steels using in-situ synchrotron X-ray diffraction[J]. Metallurgical and Materials Transactions A, 2007, 38(3): 464-475.
[25] NILSSON J O. Super duplex stainless steels[J]. Materials Science and Technology, 1992, 8(8): 685-700.
[1] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[2] 陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10.
[3] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[4] 周怡然, 刘虎, 杨金华, 姜卓钰, 吕晓旭, 焦健. 熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理[J]. 材料工程, 2019, 47(6): 88-93.
[5] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[6] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[7] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[8] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[9] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[10] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[11] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[12] 任德均, 李锐, 王明连, 刘九山. 磁场对磁流变弹性体表面特性的影响[J]. 材料工程, 2019, 47(3): 79-86.
[13] 陈鹏, 朱小刚, 吴甲民, 王联凤, 史玉升. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47(3): 87-93.
[14] 袁姣娜, 王建利, 杨忠, 郭永春, 李建平. 合金成分对Mg-Zn-Y合金准晶形貌和体积分数的影响[J]. 材料工程, 2019, 47(3): 116-122.
[15] 董雪, 马爽, 武晓霞, 那日苏. Fe52T2(T=Cr,Mn,Co,Ni)合金bcc与fcc相结构的第一性原理研究[J]. 材料工程, 2019, 47(3): 147-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn