Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (5): 54-58    DOI: 10.11868/j.issn.1001-4381.2016.05.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
微量Fe对Mg-3%Al合金碳质孕育衰退的影响
王明华1, 杜军2
1. 广州番禺职业技术学院 珠宝学院, 广州 511483;
2. 华南理工大学 材料科学与工程学院, 广州 510640
Influence of Trace Fe on Fading of Mg-3%Al Alloy Inoculated by Carbon
WANG Ming-hua1, DU Jun2
1. Jewelry Institute, Guangzhou Panyu Polytechnic, Guangzhou 511483, China;
2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(6984 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对含微量Fe的Mg-3%Al合金进行碳质孕育处理,并调整保温时间,研究了保温时间对合金晶粒尺度和晶核组织特征的影响。结果表明:当保温时间在20min内时,合金组织中有效形核粒子主要以Al4C3和Al4C3表层包覆Al-(C)-Fe相的双相粒子为主,合金晶粒得到细化。但随保温时间进一步延长,因沉降聚集或结构变化使得有效形核粒子数量和比例逐渐下降,合金晶粒显著粗化,产生孕育衰退。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王明华
杜军
关键词 Mg-Al合金碳质孕育晶粒细化孕育衰退    
Abstract:Mg-3%Al alloy containing trace 0.1%Fe was inoculated by carbon. The carbon-inoculated Mg-3%Al-0.1%Fe melt was held for different time after inoculation to study the effect of holding time on grain size and characteristic of carbonaceous nuclei. The results show that when the holding time is within 20min, there mainly exist Al4C3 particles and the particles with duplex phase structure of Al4C3 coated on Al-(C)-Fe in the samples. The number of particles of Al4C3 and Al4C3 coated on Al-(C)-Fe decreases with the increase of holding time due to aggregation, settlement and structure change of the potent nuclei. Consequently, the grains become coarse and inoculation fading occurs.
Key wordsMg-Al alloy    carbon inoculation    grain refinement    inoculation fading
收稿日期: 2015-05-13      出版日期: 2016-05-19
中图分类号:  TG146.2+2  
通讯作者: 杜军(1975-),男,教授,博士,研究方向:轻合金强化及其表面改性,联系地址:广东省广州市天河区华南理工大学材料科学与工程学院金属系(510640),E-mail:tandujun@sina.com     E-mail: tandujun@sina.com
引用本文:   
王明华, 杜军. 微量Fe对Mg-3%Al合金碳质孕育衰退的影响[J]. 材料工程, 2016, 44(5): 54-58.
WANG Ming-hua, DU Jun. Influence of Trace Fe on Fading of Mg-3%Al Alloy Inoculated by Carbon. Journal of Materials Engineering, 2016, 44(5): 54-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.009      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/54
[1] LUO A A. Recent magnesium alloy development for elevated temperature applications[J]. International Material Reviews, 2004, 49(1): 13-30.
[2] DU J D, HAN W J, PENG Y H. Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese pidgeon process[J]. Journal of Cleaner Production, 2010, 18(2): 112-119.
[3] MA Y G, CHEN R S, HAN E H. Keys to improving the strength and ductility of the AZ64 magnesium alloy[J]. Material Letters, 2007, 61(11-12): 2527-2530.
[4] ZENG X Q, WANG Y X, DING W J, et al. Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy[J]. Metallurgical and Materials Transactions A, 2006, 37(4): 1333-1341.
[5] CHEN T J, WANG R Q, MA Y, et al. Grain refinement of AZ91D magnesium alloy by Al-Ti-B master alloy and its effect on mechanical properties[J]. Materials & Design, 2012, 34: 637-648.
[6] DU J,YANG J, KUWABARA M, et al.Effects of carbon and/or alkaline earth elements on grain refinement and tensile strength for AZ31 alloy[J].Materials Transactions, 2008, 49(10): 2303-2309.
[7] SURESH M, SRINIVASANAN A, RAVI K R, et al. Microstructural refinement and tensile properties enhancement of Mg-3Al alloy using charcoal additions[J]. Materials Science and Engineering:A, 2011, 528(6): 2502-2508.
[8] WANG L, KIM Y M, LEE J H, et al. Effect of magnesium carbonate on microstructure and rolling behaviors of AZ31 alloy[J]. Materials Science and Engineering:A, 2011, 528(3): 1485-1490.
[9] MOTEGI T. Grain-refining mechanisms of superheat-treatment of and carbon addition to Mg-Al-Zn alloys[J]. Materials Science and Engineering:A, 2005, 413-414:408-411.
[10] CAO P, QIAN M, STJOHN D H. Effect of iron on grain refinement of high-purity Mg-Al alloys[J]. Scripta Materialia, 2004, 51(2): 125-129.
[11] LU L, DAHLE A K, STJOHN D H. Heterogeneous nucleation of Mg-Al alloys[J]. Scripta Materialia, 2006, 54(12): 2197-2201.
[12] DING H M, LIU X F. The grain refinement efficiency of Ni-C on Mg-Al alloys[J]. Materials Letters, 2009, 63(6-7):635-637.
[13] EASTON M A, SCHIFFL A, YAO J Y, et al. Grain refinement of Mg-Al(-Mn) alloys by SiC additions[J]. Scripta Materialia, 2006, 55(4):379-382.
[14] ZHANG M X, KELLY P M, QIAN M, et al. Crystallography of grain refinement in Mg-Al based alloys[J]. Acta Materialia, 2005, 53(11):3261-3270.
[15] LEE Y C, DAHLE A K, STJOHN D H. The role of solute in grain refinement of magnesium[J]. Metallurgical and Materials Transactions A, 2000, 31(11): 2895-2906.
[16] ALI Y H, QIU D, JIANG B, PAN F S, ZHANG M X. Current research progress in grain refinement of cast magnesium alloys: a review article[J]. Journal of Alloys and Compounds, 2015, 619: 639-651.
[17] STJOHN D H, EASTON M A, QIAN M, et al. Grain refinement of magnesium alloys: a review of recent research, theoretical developments, and their application[J]. Metallurgical and Materials Transactions A, 2013, 44(7): 2935-2949.
[18] LIMMANEEVICHITR C, EIDHED W. Fading mechanism of grain refinement of aluminum-silicon alloy with Al-Ti-B grain refiners[J]. Materials Science and Engineering: A, 2003, 349(1-2): 197-206.
[19] DU J, WANG M H, ZHOU M C, et al. Evolutions of grain size and nucleating particles in carbon-inoculated Mg-3%Al alloy[J]. Journal of Alloys and Compounds, 2014, 592:313-318.
[20] HAITANI T, TAMURA Y, YANO E, et al. Grain refining mechanism of high-purity Mg-9 mass% Al alloy ingot and influence of Fe or Mn addition on cast grain size[J]. Journal of Japan Institute of Light Metals, 2001, 51(8): 403-408.
[21] CAO P, QIAN M, STJOHN D H. Native grain refinement of magnesium alloys[J]. Scripta Materialia, 2005, 53(7):841-844.
[22] PAN Y C, LIU X F, YANG H. Role of C and Fe in grain refinement of an AZ63B magnesium alloy by Al-C master alloy[J]. Journal of Materials Science & Technology, 2005, 21(6):822-826.
[23] DU J, YANG J, KUWABARA M, et al. Effect of iron and/or carbon on the grain refinement of Mg-3Al alloy[J]. Materials Transactions, 2007, 48(11): 2903-2908.
[24] LU L, DAHLE A K, STJOHN D H. Grain refinement efficiency and mechanism of aluminum carbide in Mg-Al alloys[J]. Scripta Materialia, 2005, 53(5):517-522.
[25] VILLARS P, PRICE A, OKAMOTO H. Handbook of Ternary Alloy Phase Diagrams[M]. Metal Parks,Ohio: ASM International, 1995.
[26] 王明华. Fe(Mn)对 Mg-3Al 合金碳质孕育细化的影响及机制研究[D].广州:华南理工大学,2012.
[27] 黄仲涛.现代化工词典[M]. 北京:科学出版社,2004.
[1] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
[2] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[3] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[4] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[5] 韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
[6] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[7] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[8] 唐群华, 廖晓舟, 戴品强. Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变[J]. 材料工程, 2015, 43(12): 45-51.
[9] 黄元春, 杜志勇, 肖政兵, 颜徐宇. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43(12): 75-80.
[10] 李晓闲, 孙新军, 杨庚蔚, 李昭东, 虞澜, 雍岐龙. 低碳钒微合金钢的淬透性研究[J]. 材料工程, 2014, 0(4): 58-62.
[11] 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 0(9): 54-59.
[12] 胡耀波, 赵冲, 吴福洲, 李亚妮. Mg-Zn-xCu-Ce镁合金铸态组织与力学性能[J]. 材料工程, 2012, 0(5): 1-5.
[13] 韩栋, 杜军, 李文芳. 碳和碱土元素复合细化对Mg-3Al合金抗拉强度的影响[J]. 材料工程, 2011, 0(5): 21-25.
[14] 任晓, 周文龙, 陈国清, 吴承伟, 黄朝晖, 张俊善. 稳恒强磁场在固态相变中应用的研究进展[J]. 材料工程, 2009, 0(3): 82-86.
[15] 侯运丰, 夏天东, 赵文军. 铝液温度对热爆合成Al-Ti-C中间合金组织的影响[J]. 材料工程, 2008, 0(6): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn