Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (5): 72-78    DOI: 10.11868/j.issn.1001-4381.2016.05.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
Ce68Al10Cu20Nb2大块非晶表面钝化膜的研究
王国材, 肖小波, 陈艳萍, 王晨
福州大学 材料科学与工程学院, 福州 350116
Passive Film Formed on Ce68Al10Cu20Nb2 Bulk Amorphous Alloy
WANG Guo-cai, XIAO Xiao-bo, CHEN Yan-ping, WANG Chen
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
全文: PDF(2165 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用铜模冷铸法制备了Ce68Al10Cu20Nb2大块非晶合金,利用动电位极化曲线和电化学阻抗谱技术(EIS)研究了合金在1mol/L NaOH溶液中的腐蚀行为,并用扫描电子显微镜(SEM)对电化学钝化前后试样的表面形貌进行了表征,最后利用X射线光电子能谱(XPS)分析了电化学钝化处理获得的钝化膜的成分。结果表明:Ce68Al10Cu20Nb2 大块非晶合金在1mol/L NaOH溶液中具有明显的自钝化现象,钝化区为-0.25~0.50V,维钝电流密度为10-5~10-6A/cm2;通过电化学钝化后获得的钝化膜可分为外部疏松层和内部致密层;外层主要是Ce的氧化物/氢氧化物和 Nb的氧化物,内层则由Ce,Cu和Al的氧化物/氢氧化物和Nb的氧化物构成,钝化膜从外到内,随深度增加,氢氧化物含量逐渐减少,氧化物含量逐渐增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王国材
肖小波
陈艳萍
王晨
关键词 非晶合金腐蚀极化钝化膜XPS    
Abstract:The Ce68Al10Cu20Nb2 bulk amorphous alloy was prepared by injection casting into copper mold. The corrosion behaviors of the alloy in 1mol/L NaOH solution were investigated by potentiodynamic polarization curve method and electrochemical impedance spectroscopic (EIS) technique. The surface morphology of passive film was investigated by scanning electron microscopy (SEM). The composition of passive film was characterized using X-ray photoelectron spectroscopy (XPS). The results show that the Ce68Al10Cu20Nb2 bulk amorphous alloy exhibits a self-passivation phenomenon in 1mol/L NaOH solution with the passive region from -0.25V to 0.50V and the passive current density between 10-5-10-6A/cm2. The passive film obtained through electrochemical passivation consists of a porous outer layer and a dense inner layer. The outer layer is mainly composed of the oxides/hydroxides of Ce and the oxides of Nb,the inner layer is composed of the oxides/hydroxides of Ce, Cu,Al and the oxides of Nb. The content of hydroxides gradually decreases and the content of oxides gradually increases from the surface to the inside of the passive film.
Key wordsamorphous alloy    corrosion    polarization    passive film    XPS
收稿日期: 2014-09-28      出版日期: 2016-05-19
中图分类号:  TG174.3  
通讯作者: 王晨(1979-),男,教授,硕士研究生导师,研究方向:磁性材料、材料表面处理、电致变色材料,联系地址:福建省福州市闽侯县上街镇大学城学园路2号福州大学材料科学与工程学院(350116),E-mail:msewang@fzu.edu.cn     E-mail: msewang@fzu.edu.cn
引用本文:   
王国材, 肖小波, 陈艳萍, 王晨. Ce68Al10Cu20Nb2大块非晶表面钝化膜的研究[J]. 材料工程, 2016, 44(5): 72-78.
WANG Guo-cai, XIAO Xiao-bo, CHEN Yan-ping, WANG Chen. Passive Film Formed on Ce68Al10Cu20Nb2 Bulk Amorphous Alloy. Journal of Materials Engineering, 2016, 44(5): 72-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.012      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/72
[1] 汪卫华. 金属玻璃研究简史[J]. 物理, 2011, 40(11): 701-709. WANG Wei-hua. A brief history of metallic glasses[J]. Physics, 2011, 40(11): 701-709.
[2] 胡壮麒,张海峰.块状非晶合金及其复合材料研究进展[J]. 金属学报, 2010, 46(11):1391-1421. HU Zhuang-qi, ZHANG Hai-feng. Recent progress in the area of bulk amorphous alloy and composites[J]. Acta Metallurgica Sinica, 2010, 46(11): 1391-1421.
[3] PARK E S, KIM D H. Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: a review[J]. Metals and Materials International, 2005, 11(1): 19-27.
[4] ZHANG B, ZHAO D Q, PAN M X, et al. Amorphous metallic plastic[J]. Physical Review Letters, 2005, 94(20): 1-4.
[5] ZHANG B, WANG R J, ZHAO D Q, et al. Properties of Ce-based bulk metallic glass-forming alloys[J]. Physical Review B, 2004, 70(22): 1-7.
[6] ZHANG T, LI R, PANG S. Effect of similar elements on improving glass-forming ability of La-Ce-based alloys[J]. Journal of Alloys and Compounds, 2009, 483(1-2): 60-63.
[7] LI R, PANG S J, MEN H, et al. Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability[J]. Scripta Materialia, 2006, 54(6): 1123-1126.
[8] BAI Y Y, GENG Y L, JIANG C M, et al. β relaxation and its composition dependence in Ce-based bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2014, 390: 1-4.
[9] FORNELL J, SURIÑACH S, BARÓ M D, et al. Unconventional elastic properties, deformation behavior and fracture characteristics of newly developed rare earth bulk metallic glasses[J]. Intermetallics, 2009, 17(12): 1090-1097.
[10] WEI B C, ZHANG T H, ZHANG L C, et al. Plastic deformation in Ce-based bulk metallic glasses during depth-sensing indentation[J]. Materials Science and Engineering: A, 2007, 449-451: 962-965.
[11] ZHANG L C, WEI B C, XING D M, et al. The characterization of plastic deformation in Ce-based bulk metallic glasses[J]. Intermetallics, 2007, 15(5-6): 791-795.
[12] XU B C, XUE R J, ZHANG B. Superior glass-forming ability and its correlation with density in Ce-Ga-Cu ternary bulk metallic glasses[J]. Intermetallics, 2013, 32: 1-5.
[13] ZHOU Y, ZHAO Y, QU B Y, et al. Remarkable effect of Ce base element purity upon glass forming ability in Ce-Ga-Cu bulk metallic glasses[J]. Intermetallics, 2014, 56: 56-62.
[14] QIAO J C, PELLETIER J M. Thermal stability of (Ce0.72Cu0.28)90-xAl10Fex(x=0, 5 or 10) bulk metallic glasses[J]. Physica Status Solidi (c), 2011, 8(11-12): 3074-3077.
[15] YU P, CHAN K C, CHEN W, et al. Low-temperature mechanical properties of Ce[J]. Philosophical Magazine Letters, 2011, 91(1): 70-77.
[16] 胡侨, 张敏, 李海飞, 等. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, (6): 18-21. HU Qiao, ZHANG Min, LI Hai-fei, et al. Formation, bio-corrosion behavior and mechanical properties of Ti-Zr-Cu-Co-Sn-Si bulk metallic glasses[J]. Journal of Materials Engineering, 2014, (6): 18-21.
[17] 邱春龙, 黄璐, 卢旭阳, 等. Ni-Ti(-Zr)-P非晶合金的热稳定性及腐蚀行为[J]. 稀有金属材料与工程, 2013, 42(5): 975-978. QIU Chun-long, HUANG Lu, LU Xu-yang, et al. Thermal stability and corrosion behavior of Ni-Ti(-Zr)-P glassy alloys[J]. Rare Metal Materials and Engineering, 2013, 42(5): 975-978.
[18] BIAN Z, INOUE A. New Ce-Cu-Al-Zn bulk metallic glasses with high oxidation resistance[J]. Materials Transactions, 2006, 47(10): 2599-2602.
[19] GEBERT A, MUMMERT K, ECKERT J, et al. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy[J]. Materials and Corrosion, 1997, 48(5): 293-297.
[20] WU H, WANG Y, ZHONG Q, et al. The semi-conductor property and corrosion resistance of passive film on electroplated Ni and Cu-Ni alloys[J]. Journal of Electroanalytical Chemistry, 2011, 663(2): 59-66.
[21] 纪红, 许越, 周德瑞, 等. LY12铝合金表面铈纳米膜的制备及显微组织特征[J]. 航空材料学报, 2003, 23(1): 21-23. JI Hong, XU Yue, ZHOU De-rui, et al. Process and microstructure characters of ceria nanocrystalline film on aluminium alloy LY12[J]. Journal of Aeronautical Materials, 2003, 23(1): 21-23.
[22] MONTEMOR M F, SIMÕES A M, FERREIRA M G S, et al. Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion[J]. Applied Surface Science, 2008, 254(6): 1806-1814.
[23] 康俊龙, 姚兰芳, 杨松林, 等. Ce掺杂TiO2纳米复合薄膜的制备及光催化活性[J]. 人工晶体学报, 2013, 42(4): 671-676. KANG Jun-long, YAO Lan-fang, YANG Song-lin, et al. Preparation and photocatalytic activity of Ce-doped TiO2 composite nanometer films[J]. Journal of Synthetic Crystals, 2013, 42(4): 671-676.
[24] LARACHI F, PIERRE J, ADNOT A, et al. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts[J]. Applied Surface Science, 2002, 195(1-4): 236-250.
[25] TAN C W, DAUD A R, YARMO M A. Corrosion study at Cu-Al interface in microelectronics packaging[J]. Applied Surface Science, 2002, 191(1-4): 67-73.
[26] PROCACCINI R, SCHREINER W H, VAZQUEZ M, et al. Surface study of films formed on copper and brass at open circuit potential[J]. Applied Surface Science, 2013, 268: 171-178.
[27] MARQUES M T, FERRARIA A M, CORREIA J B, et al. XRD, XPS and SEM characterisation of Cu-NbC nanocomposite produced by mechanical alloying[J]. Materials Chemistry and Physics, 2008, 109(1): 174-180.
[28] KUNZE J, MAURICE V, KLEIN L H, et al. In situ STM study of the duplex passive films formed on Cu(111) and Cu(001) in 0.1 M NaOH[J]. Corrosion Science, 2004, 46(1): 245-264.
[29] BRAJPURIYA R, SHRIPATHI T. Investigation of Fe/Al interface as a function of annealing temperature using XPS[J]. Applied Surface Science, 2009, 255(12): 6149-6154.
[30] QIN F X, ZHANG H F, CHEN P, et al. Corrosion behavior of bulk amorphous Zr55Al10Cu30Ni5-xPdx alloys[J]. Materials Letters, 2004, 58(7-8): 1246-1250.
[31] WANG X M, ZHU L Q, HE X, et al. Effect of cerium additive on aluminum-based chemical conversion coating on AZ91D magnesium alloy[J]. Applied Surface Science, 2013, 280: 467-473.
[32] MILOŠEV I, KOSEC T, STREHBLOW H H. XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank's physiological solution[J]. Electrochimica Acta, 2008, 53(9): 3547-3558.
[33] HALBRITTER J. On the oxidation and on the superconductivity of niobium[J]. Applied Physics A, 1987, 43(1): 1-28.
[34] YU X, LI G. XPS study of cerium conversion coating on the anodized 2024 aluminum alloy[J]. Journal of Alloys and Compounds, 2004, 364(1-2): 193-198.
[1] 李妍, 付东旭, 张青松, 竺云. 单/双离子替代对铁酸铋薄膜性能影响的研究进展[J]. 材料工程, 2019, 47(5): 10-17.
[2] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[3] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[4] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[5] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[6] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[7] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
[8] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[9] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[10] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[11] 张莹, 高博, 王磊, 宋秀. 一种新型钴基高温合金在900℃熔融NaCl中的热腐蚀行为[J]. 材料工程, 2018, 46(8): 134-139.
[12] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[13] 章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
[14] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[15] 山圣峰, 田晓生, 于涛, 贾元智, 马明臻. Y添加Ti40Zr25Cu9Ni8Be18非晶合金的纳米晶化及力学性能[J]. 材料工程, 2018, 46(7): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn