Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (5): 112-119    DOI: 10.11868/j.issn.1001-4381.2016.05.017
  综述 本期目录 | 过刊浏览 | 高级检索 |
石墨烯/金属复合材料力学性能的研究进展
张丹丹, 战再吉
燕山大学 亚稳材料制备技术与科学国家重点实验室, 河北 秦皇岛 066004
Progress in Research on Mechanical Properties of Graphene/Metal Composites
ZHANG Dan-dan, ZHAN Zai-ji
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
全文: PDF(3359 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了石墨烯/金属复合材料在力学性能研究方面的现状、进展及发展趋势,讨论了线弹性非均质材料的微观力学模型在阐明石墨烯强化机制中的作用,着重阐述了石墨烯的结构完整性以及分散方法的选择等对于提高石墨烯/金属复合材料力学性能的重要性,归纳了当前石墨烯强化金属基复合材料研究存在的问题,并从原料研制、理论探索、工艺开发和协同增强等方面指出了石墨烯/金属复合材料力学性能的研究趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丹丹
战再吉
关键词 石墨烯金属基复合材料力学性能石墨烯结构分散方法    
Abstract:The research status, progress and development tendency of mechanical properties of graphene/metal composites were reviewed. Effects of micromechanical models of linear elastic heterogeneous materials in predicting of the strengthening mechanism involved in graphene/metal composites were introduced. The effects of the structural integrity of graphene and dispersion technique on the strengthening efficiency were focused and discussed. The problems of reinforcing metal matrix composites with graphene were summarized. The research direction of mechanical properties of graphene/metal composites was proposed from the aspects such as graphene development, theoretical exploration, dispersion technique development and synergetic enhancement and etc.
Key wordsgraphene    metal matrix composite    mechanical property    structure of graphene    dispersion technique
收稿日期: 2014-12-29      出版日期: 2016-05-19
1:  TB331  
通讯作者: 战再吉(1968-),男,教授,博士生导师,主要研究方向为新型结构功能材料,联系地址:河北省秦皇岛市河北大街西段438号燕山大学1500信箱(066004),E-mail:zjzhan@ysu.edu.cn     E-mail: zjzhan@ysu.edu.cn
引用本文:   
张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程, 2016, 44(5): 112-119.
ZHANG Dan-dan, ZHAN Zai-ji. Progress in Research on Mechanical Properties of Graphene/Metal Composites. Journal of Materials Engineering, 2016, 44(5): 112-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.017      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/112
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[3] 匡达, 胡文彬. 石墨烯复合材料的研究进展[J]. 无机材料学报, 2013, 28(3):235-246. KUANG Da, HU Wen-bin. Research progress of graphene composites[J]. Journal of Inorganic Materials, 2013, 28(3):235-246.
[4] 周俊文, 马文石. 石墨烯及其纳米复合材料的研究[J]. 化工新型材料, 2010, 38(3):26-28. ZHOU Jun-wen, MA Wen-shi. Research progress on preparation of graphene and its nanocomposites[J]. New Chemical Materials, 2010, 38(3):26-28.
[5] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
[6] RAO C N, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition in English, 2009, 48(42):7752-7777.
[7] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites[J]. ACS Nano, 2011, 5(4):3182-3190.
[8] TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports, 2013, 74(10):281-350.
[9] BIANCO A, CHENG H-M, ENOKI T, et al. All in the graphene family-a recommended nomenclature for two-dimensional carbon materials[J]. Carbon, 2013, 65:1-6.
[10] WANG J, LI Z, FAN G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materialia, 2012, 66(8):594-597.
[11] CHEN L, KONISHI H, FEHRENBACHER A, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J]. Scripta Materialia, 2012, 67(1): 29-32.
[12] HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Advanced Materials, 2013, 25(46):6724-6729.
[13] LI M, CHE H, LIU X, et al. Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles[J]. Journal of Materials Science, 2014, 49(10):3725-3731.
[14] THOSTENSON E T, CHOU T W. On the elastic properties of carbon nanotube-based composites: modelling and characterization[J]. Journal of Physics D Applied Physics, 2003, 36(5):573-582.
[15] 梁军, 杜善义, 韩杰才. 一种含特定微裂纹缺陷三维编织复合材料弹性常数预报方法[J]. 复合材料学报, 1997, 14(1):101-107. LIANG Jun, DU Shan-yi, HAN Jie-cai. Effective elastic properties of three-dimensional braided composites with matrix microcracks[J]. Acta Materiae Compositae Sinica, 1997, 14(1):101-107.
[16] MALLICK P K.Fiber-reinforced Composites: Materials, Manufacturing, and Design[M]. New York: Marcel Dekker, 1993.130.
[17] MORI T,TANAKA K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5):571-574.
[18] HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2):127-140.
[19] ESHELBY J D.The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1957, 241(1226):376-396.
[20] COX H L.The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics, 1952, 3(3):72-79.
[21] HALPIN J C. Halpin-Tsai equations: a review[J]. Polymer Engineering and Science, 1976, 16(5):344-352.
[22] RASHAD M, PAN F, ASIF M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6):4250-4255.
[23] RASHAD M, PAN F, TANG A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Progress in Natural Science: Materials International, 2014, 24(2):101-108.
[24] TANG Y, YANG X, WANG R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids[J]. Materials Science and Engineering: A, 2014, 599:247-254.
[25] YAN S J, DAI S L, ZHANG X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes[J]. Materials Science and Engineering: A, 2014, 612:440-444.
[26] HALPIN J C, THOMAS R L. Ribbon reinforcement of composites[J]. Journal of Composite Materials, 1968, 2(4):488-497.
[27] HALPIN J C, TSAI S W. Environmental factors estimation in composite materials design[R]. Ohio, USA: Air Force Materials Laboratory, 1967.
[28] CHU K, JIA C. Enhanced strength in bulk graphene-copper composites[J]. Physica Status Solidi A, 2014, 211(1):184-190.
[29] LIU L, BARBER A H, NURIEL S, et al. Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites[J]. Advanced Functional Materials, 2005, 15(6):975-980.
[30] ZHAO X, ZHANG Q, CHEN D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5):2357-2363.
[31] RAFIEE M, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12):3884-3890.
[32] LEE C, WEI X, LI Q, et al. Elastic and frictional properties of graphene[J]. Physica Status Solidi B, 2009, 246(11-12):2562-2567.
[33] XIANG J, DRZAL L T. Thermal conductivity of exfoliated graphite nanoplatelet paper[J]. Carbon, 2011, 49(3):773-778.
[34] SUK J W, PINER R D, AN J, et al. Mechanical properties of monolayer graphene oxide[J]. ACS Nano, 2012, 4(11): 6557-6564.
[35] BARTOLUCCI S F, PARAS J, RAFIEE M A, et al. Graphene-aluminum nanocomposites[J]. Materials Science and Engineering: A, 2011, 528(27):7933-7937.
[36] SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8):1178-1271.
[37] ALLEN M, TUNG V, KANER R. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1):132-145.
[38] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
[39] ARAUJO P T, TERRONES M, DRESSELHAUS M S. Defects and impurities in graphene-like materials[J]. Materials Today, 2012, 15(3):98-109.
[40] DAS A, CHAKRABORTY B, SOOD A K. Raman spectroscopy of graphene on different substrates and influence of defects[J]. Bulletin of Materials Science, 2008, 31(3):579-584.
[41] LIAO K H, MITTAL A, BOSE S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano, 2011, 5(2):1253-1258.
[42] PÉREZ-BUSTAMANTE R, BOLAÑOS-MORALES D, BONILLA-MARTÍNEZ J, et al. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying[J]. Journal of Alloys and Compounds, 2014, 615(Suppl 1):578-582.
[43] KIM Y, LEE J, YEOM M S, et al. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites[J]. Nature Communications, 2013, 4:2114.
[44] ZHAI W, SHI X, XU Z, et al. Formation of friction layer of Ni3Al matrix composites with micro- and nano-structure during sliding friction under different loads[J]. Materials Chemistry and Physics, 2014, 147(3):850-859.
[45] ZHAI W, SHI X, WANG M, et al. Grain refinement: a mechanism for graphene nanoplatelets to reduce friction and wear of Ni3Al matrix self-lubricating composites[J]. Wear, 2014, 310(1-2):33-40.
[46] XU Z S, SHI X L, ZHAI W Z, et al. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene[J]. Carbon, 2014, 67:168-177.
[47] SHIN S E, CHOI H J, SHIN J H, et al. Strengthening behavior of few-layered graphene/aluminum composites[J]. Carbon, 2015, 82:143-151.
[48] KIM W J, LEE T J, HAN S H. Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling,microstructure and mechanical properties[J]. Carbon,2014,69:55-65.
[49] 燕绍九, 杨程, 洪起虎, 等. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014, (4):1-6. YAN Shao-jiu, YANG Cheng, HONG Qi-hu, et al. Research of graphene-reinforced aluminum matrix nanocomposites[J]. Journal of Materials Engineering, 2014, (4):1-6.
[50] RASHAD M, PAN F, TANG A, et al. Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys[J]. Journal of Magnesium and Alloys, 2013, 1(3):242-248.
[51] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224.
[52] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39(1):228-240.
[53] JANG B Z, ZHAMU A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review[J]. Journal of Materials Science, 2008, 43(15):5092-5101.
[54] FAN X, PENG W, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation[J]. Advanced Materials, 2008, 20(23):4490-4493.
[55] STANKOVICH S, DIKIN D A, DOMMETT G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
[56] SCHNIEPP H C, LI J L, MCALLISTER M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. Journal of Physical Chemistry B, 2006, 110(17):8535-8539.
[57] RASHAD M, PAN F, TANG A, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. Journal of Alloys and Compounds, 2014, 603:111-118.
[58] PAVITHRA C L, SARADA B V, RAJULAPATI K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J]. Scientific Reports, 2014, 4:4049.
[59] LI Z, FAN G, TAN Z, et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites[J]. Nanotechnology, 2014, 25(32):325601.
[60] JEON C H, JEONG Y H, SEO J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(6):1235-1239.
[61] JIANG L, FAN G, LI Z, et al. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder[J]. Carbon, 2011, 49(6):1965-1971.
[62] ZHAO C, WANG J. Fabrication and tensile properties of graphene/copper composites prepared by electroless plating for structrual applications[J]. Physica Status Solidi A, 2014: 211(12): 2878-2885.
[63] 管仁国, 连超, 赵占勇, 等. 石墨烯铝基复合材料的制备及其性能[J]. 稀有金属材料与工程, 2012, 41(增刊2):607-611. GUAN Ren-guo, LIAN Chao, ZHAO Zhan-yong, et al. Study on preparation of graphene and Al-graphene composite[J]. Rare Metal Materials and Engineering, 2012, 41(Suppl 2):607-611.
[64] WANG Y, ZHAO Y, BAO T J, et al. Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties[J]. Applied Surface Science, 2012, 258(22):8603-8608.
[65] CHA S I, KIM K T, ARSHAD S N, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17(11):1377-1381.
[66] BASTWROS M, KIM G Y, ZHU C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering[J]. Composites Part B: Engineering, 2014, 60:111-118.
[1] 郑辉东. 3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能[J]. 材料工程, 2016, 44(6): 1-8.
[2] 黄正华, 刘汪涵博, 戚文军, 徐静. 第三组元对Mg-Sn合金铸态组织与力学性能的影响[J]. 材料工程, 2016, 44(6): 56-62.
[3] 秦仁耀, 孙兵兵, 肇恒跃, 郭绍庆, 唐思熠, 张学军. ZM5镁合金TIG焊接接头组织与力学性能[J]. 材料工程, 2016, 44(6): 92-97.
[4] 于美, 李新杰, 马玉骁, 刘瑞丽, 刘建华, 李松梅. 石墨烯基复合超级电容器材料研究进展[J]. 材料工程, 2016, 44(5): 101-111.
[5] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[6] 张晓云, 曹东, 陆峰, 刘建华. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4): 82-88.
[7] 张爱军, 韩杰胜, 马文林, 孟军虎. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3): 1-8.
[8] 赵吉宾, 王志国, 赵宇辉, 龙雨, 王福雨, 来佑彬. 真空热处理对激光近净成形In625和C-276合金性能的影响[J]. 材料工程, 2016, 44(3): 28-34.
[9] 张敏, 刘明志, 张明, 李继红. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J]. 材料工程, 2016, 44(3): 40-45.
[10] 陈昱, 王京钰, 李维尊, 鞠美庭. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3): 103-113.
[11] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[12] 刘文辉, 何圳涛, 唐昌平, 陈宇强. 变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程, 2016, 44(1): 47-53.
[13] 张伟钢, 徐国跃, 薛连海. 聚氨酯/青铜-Sm2O3复合涂层的近红外吸收与发射率性能[J]. 材料工程, 2016, 44(1): 115-119.
[14] 王婧, 任会兰, 郝莉, 宁建国. 多孔钛材料的动态力学响应研究[J]. 材料工程, 2015, 43(9): 87-93.
[15] 李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn