Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.06.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能
郑辉东
福州大学 石油化工学院, 福州 350108
Fabrication and Properties of 3D Graphene Oxide Nanoribbons-carbon Nanotubes/TPU Composite Films
ZHENG Hui-dong
School of Petrochemical Engineering, Fuzhou University, Fuzhou 350108, China
全文: PDF(12236 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用溶液成型法制得3D功能化氧化石墨烯纳米带-碳纳米管(pGONRs-CNTs)/热塑性聚氨酯(TPU)复合材料薄膜。采用FTIR,XRD,XPS和TEM对所得pGONRs-CNTs的结构及性能进行表征,并结合所得TPU复合材料薄膜的氧气透过率和拉伸性能测试以及表面形貌观察,研究GONRs与CNTs的协同作用以及不同含量pGONRs-CNTs对TPU复合材料薄膜阻隔和力学性能的影响。结果表明:pGONRs-CNTs复合体具有独特的3D交织状结构,其中GONRs间通过CNTs链接,二者间较强的π-π键使得这种结合形态牢固紧密,同时CNTs的存在也起到支撑骨架的作用,防止GONRs的滑移与团聚;通过异氰酸苯酯的改性处理,pGONRs-CNTs复合体的亲油性得到明显提高,同时较为庞大的异氰酸根的引入,使得GONR-GONR间的层间距得到了进一步的提高,更有利于其在聚合物基体中实现均匀分散。当pGONRs-CNTs质量分数为0.5%时,pGONRs-CNTs/TPU复合材料薄膜的氧气透过率和拉伸强度相比纯TPU薄膜分别降低了63.08%和提高了46.55%,阻隔性能和力学性能均得到显著改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑辉东
关键词 3D氧化石墨烯纳米带-碳纳米管TPU复合材料薄膜氧气透过率阻隔性能    
Abstract:A solution method for modifying thermoplastic polyurethane (TPU) by the introduction of 3D functionalized nanohybrids composed of two-dimensional GONRs and one-dimensional CNTs was applied. FTIR, XRD, XPS and TEM were employed to characterize the structure and properties of GONRs-CNTs hybrids before and after modification. The functionalized GONRs-CNTs (pGONRs-CNTs)/TPU composite films were subsequently prepared by solution coating method on a coating machine. Furthermore, by means of oxygen transmission rate test, tensile test and the observation of surface morphology, the synergetic effect between GONRs and CNTs and the effect of different pGONRs-CNTs content on the barrier and tensile properties of TPU composite films were also studied. The results show that a unique three-dimensional (3D) crosslinked nanostructure is successfully obtained, in which GONRs are bridged by CNTs. We also find that the as-prepared pGONRs-CNTs with neat shape and low defect are evenly dispersed in TPU matrix and form strong interfacial adhesion with the matrix, while the existing of CNTs play the role of supporting frame to prevent GONRs from sliding and aggregation; modified by phenyl isocyanate, the lipophilicity of pGONRs-CNTs composite is obviously improved, while, by the introduction of huge isocyanate, the interlayer spacing is further improved, which is good for uniform dispersion in the polymer matrix. As a result, when the mass fraction of pGONRs-CNTs is 0.5%, the barrier and tensile properties of pGONRs-CNTs/TPU composite films reach to the optimal values:the oxygen transmission rate decreases by 63.08% and the tensile strength increases by 46.55%, compared with those of the neat TPU, which will lead to great benefit for the barrier and mechanical properties of TPU films.
Key words3D GONRs-CNTs    TPU composite film    oxygen transmission rate    barrier property
收稿日期: 2015-07-20      出版日期: 2016-06-13
中图分类号:  TB34  
通讯作者: 郑辉东(1979-),博士,副教授,博士生导师,研究方向:功能化工材料,联系地址:福州市大学新区学园路2号福州大学石油化工学院(350108),E-mail:youngman@fzu.edu.cn     E-mail: youngman@fzu.edu.cn
引用本文:   
郑辉东. 3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能[J]. 材料工程, 2016, 44(6): 1-8.
ZHENG Hui-dong. Fabrication and Properties of 3D Graphene Oxide Nanoribbons-carbon Nanotubes/TPU Composite Films. Journal of Materials Engineering, 2016, 44(6): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/1
[1] YAMASAKI S, NISHIGUCHI D, KOJIO K, et al. Effects of polymerization method on structure and properties of thermoplastic polyurethanes[J]. Journal of Polymer Science Part B:Polymer Physics, 2007, 45(7):800-814.
[2] MISHRA A, MAITI P. Morphology of polyurethanes at various length scale:the influence of chain structure[J]. Journal of Applied Polymer Science, 2011, 120(6):3546-3555.
[3] MISHRA A K, NANDO G B, CHATTOPADHYAY S. Exploring preferential association of laponite and cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique[J]. Journal of Polymer Science Part B:Polymer Physics, 2008, 46(21):2341-2354.
[4] SANTERRE J P, WOODHOUSE K, LAROCHE G, et al.Understanding the biodegradation of polyurethanes:from classical implants to tissue engineering materials[J]. Biomaterials, 2005, 26(35):7457-7470.
[5] GRENIER S, SANDIG M, MEQUANINT K. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells[J]. Journal of Biomedical Materials Research Part A, 2007, 82(4):802-809.
[6] HERRERA-ALONSO J M, MARAND E, LITTLE J C, et al. Transport properties in polyurethane/clay nanocomposites as barrier materials:effect of processing conditions[J]. Journal of Membrane Science, 2009, 337(1):208-214.
[7] 王莉莉, 董侠, 刘祥贵, 等. 热塑性聚氨酯及其复合材料的界面形态与流变特性[J]. 高分子学报, 2013, (3):367-376. WANG L L, DONG X, LIU X G, et al. Microstructure and rheological properties of thermoplastic polyurethane and its composites[J]. Acta Polymerica Sinica, 2013, (3):367-376.
[8] RUSSO P, ACIERNO D, MARLETTA G, et al. Tensile properties, thermal and morphological analysis of thermoplastic polyurethane films reinforced with multiwalled carbon nanotubes[J]. European Polymer Journal, 2013, 49(10):3155-3164.
[9] WANG Y, GUPTA M, SCHIRALDI D A. Oxygen permeability in thermoplastic polyurethanes[J]. Journal of Polymer Science Part B:Polymer Physics, 2012, 50(10):681-693.
[10] HU Y, LIU R, ROGUNOVA M, et al. Oxygen-barrier properties of cold-crystallized and melt-crystallized poly (ethylene terephthalate-co-4, 4'-bibenzoate)[J]. Journal of Polymer Science Part B:Polymer Physics, 2002, 40(22):2489-2503.
[11] WONG C, PUMERA M. Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride[J]. Journal of Materials Chemistry C, 2014, 2(5):856-863.
[12] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程,2015, 43(2):96-102. ZHENG Y Y. Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite Films[J]. Journal of Materials Engineering, 2015, 43(2):96-102.
[13] KOSYNKIN D V, LU W, SINITSKII A, et al. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor[J]. ACS nano, 2011, 5(2):968-974.
[14] XIANG C, COX P J, KUKOVECZ A, et al. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances[J]. Acs Nano, 2013, 7(11):10380-10386.
[15] STANKOVICH S, PINER R D, NGUYEN S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15):3342-3347.
[16] KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240):872-876.
[17] 曹宁宁, 郑玉婴, 樊志敏, 等. 氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备及表征[J]. 高分子学报, 2015, (8):963-972. CAO N N, ZHENG Y Y, FAN Z M, et al. Preparation and characterization of graphene oxide nanoribbons-carbon nanotubes/TPU composite films[J]. Acta Polymerica Sinica, 2015, (8):963-972.
[18] KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11):3441-3450.
[19] UDDIN M F, SUN C T. Improved dispersion and mechanical properties of hybrid nanocomposites[J]. Composites Science and Technology, 2010, 70(2):223-230.
[20] XIAN G, WALTER R, HAUPERT F. Friction and wear of epoxy/TiO2 nanocomposites:influence of additional short carbon fibers, aramid and PTFE particles[J]. Composites Science and Technology, 2006, 66(16):3199-3209.
[21] YANG Z, LIU M, ZHANG C, et al. Carbon nanotubes bridged with graphene nanoribbons and their use in high efficiency dye sensitized solar cells[J]. Angewandte Chemie International Edition, 2013, 52(14):3996-3999.
[22] CUSSLER E L, HUGHES S E, WARD W J, et al. Barrier membranes[J]. Journal of Membrane Science, 1988, 38(2):161-174.
[23] SCOGNAMILLO S, GIOFFREDI E, PICCININI M, et al. Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers[J]. Polymer, 2012, 53(19):4019-4024.
[24] 代吉祥, 沙建军, 张兆甫, 等. 纤维热处理对C/C-SiC复合材料断裂韧度的影响[J]. 航空材料学报, 2014, 34(2):69-76. DAI J X, SHA J J, ZHANG Z F, et al. Influence of carbon fiber heat treatment on fracture toughness of 2D C/C-SiC composites[J]. Journal of Aeronautical Materials, 2014, 34(2):69-76.
[25] AUAD M L, CONTOS V S, NUTT S, et al. Characterization of nanocellulose-reinforced shape memory polyurethanes[J]. Polymer International, 2008, 57(4):651-659.
[1] 毛龙, 刘跃军, 姚进, 吴慧青, 白永康. 原位聚合改性纳米层状黏土/脂肪族聚酯嵌段共聚物复合材料的制备与性能[J]. 材料工程, 2018, 46(12): 70-77.
[2] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程, 2015, 43(2): 96-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn