Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 9-16    DOI: 10.11868/j.issn.1001-4381.2016.06.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Al-4%Cu凝固过程枝晶生长的数值模拟
张敏, 徐蔼彦, 汪强, 李露露
西安理工大学 材料科学与工程学院, 西安 710048
Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy
ZHANG Min, XU Ai-yan, WANG Qiang, LI Lu-lu
School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(13428 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 改进了模拟枝晶生长常用的二维元胞自动机和有限差分(CA-FD)模型,新模型引入扰动函数来控制二、三次枝晶的生长;在枝晶生长过程中,将溶质浓度明确地分为液相溶质浓度和固相溶质浓度两部分;并在溶质再分配与扩散过程中采用八邻位差分以减少网格形状导致溶质扩散的各向异性。模拟了Al-4%Cu二元合金过冷熔体中,单个和多个等轴晶沿不同择优方向生长及单方向和多方向柱状树枝晶竞争生长过程中的枝晶形貌、液相溶质浓度和固相溶质浓度分布情况。模拟结果表明:扰动的引入能够促使枝晶产生分支,并控制二、三次枝晶的生长速率;液/固相溶质计算模型能够准确地模拟出枝晶生长过程中液/固相溶质分布;此外改进后的模型实现了枝晶沿任意方向的竞争生长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏
徐蔼彦
汪强
李露露
关键词 数值模拟元胞自动机法枝晶形貌溶质浓度    
Abstract:A new two-dimensional cellular automata and finite difference (CA-FD) model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.
Key wordsnumerical simulation    cellular automaton method    dendritic morphology    solute concentration
收稿日期: 2014-05-23      出版日期: 2016-06-13
1:  TG292  
通讯作者: 张敏(1967-),男,博士,主要从事焊接成型过程的力学行为及其结构质量控制焊接和凝固过程的组织演变行为及其先进焊接材料的研究工作,地址:陕西省西安市金花南路5号西安理工大学(710048),E-mail:zhmmn@xaut.edu.cn     E-mail: zhmmn@xaut.edu.cn
引用本文:   
张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
ZHANG Min, XU Ai-yan, WANG Qiang, LI Lu-lu. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy. Journal of Materials Engineering, 2016, 44(6): 9-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.002      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/9
[1] HE Y Z, DING H L, LIU L F, et al. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle[J]. Materials Science and Engineering:A, 2006, 429(1-2):236-246.
[2] 陈晋.基于元胞自动机方法的凝固过程微观组织数值模拟[D].南京:东南大学,2005. CHEN J. Numerical simulation on solidification microstructures using cellular automaton method[D]. Nanjing:Southeast University,2005.
[3] HONG C P, ZHU M F, LEE S Y. Modeling of dendritic growth in alloy solidification with melt convection[J]. Tech Science Press, 2006, 2(4):247-260.
[4] LI Q, GUO Q Y, LI R D. Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process[J]. Chinese Physics, 2006, 15(4):778-791.
[5] LI J J, WANF J C, YANG G C. Phase-field simulation of microstructure development involving nucleation and crystallographic orientations in alloy solidification[J]. Journal of Crystal Growth, 2007, 309(1):65-69.
[6] LI D, LI R, ZHANG P W. A cellular automaton technique for modelling of a binary dendritic growth with convection[J]. Applied Mathematical Modelling, 2007,31(6):971-982.
[7] YIN H, FELICELLI S D. Dendrite growth simulation during solidification in the lens process[J]. Acta Materialia, 2010, 58(4):1455-1465.
[8] 陈守东,陈敬超,吕连灏. 基于CA-FE的双辊连铸纯铝凝固组织模拟[J]. 材料工程, 2012, (10):48-53. CHEN S D, CHEN J C, LU L H. Numerical simulation of solidified microstructure of Twin-roll continuous casting pure aluminum based on CA-FE method[J]. Journal of Materials Engineering, 2012, (10):48-53.
[9] MINORU Y, YUKINOBU N, HIROSHI H, et al. Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass%C alloy using cellular automaton method[J]. ISIJ International, 2006, 46(6):903-908.
[10] 付振南,许庆彦,熊守美. 基于概率捕获模型的元宝自动机方法模拟镁合金枝晶生长过程[J]. 中国有色金属学报, 2007,17(10):1567-1573. FU Z N, XU Q Y, XIONG S M. Numerical simulation on dendrite growth process of Mg alloy using cellular automaton method based on probability capturing model[J]. The Chinese Journal of Nonferrous Metals, 2005, 41(6):583-587.
[11] ZHAN X H, WEI Y H, DONG Z B. Cellular automaton simulation of grain growth with different orientation angles during solidification process[J]. Journal of Materials Processing Technology, 2008, 208(1-3):1-3.
[12] HAKAN H, MATTI R. Microstructure evolution influenced by dislocation density gradients modeled in a reaction diffusion system[J]. Computational Materials Science, 2013, 67:373-383.
[13] MOHSEN A Z, HEBI Y. Comparison of cellular automaton and phase field models to simulate dendrite growth in hexagonal crystals[J]. Materials Science Technology, 2012, 28(2):137-146.
[14] ZHU M F, DAI T, LEE S Y, et al. Modeling of solutal dendritic growth with melt convection[J]. Computers and Mathematics with Applications, 2008, 55(7):1620-1628.
[15] LUO S, ZHU M Y. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method[J]. Computational Materials Science, 2013, 71:10-18.
[1] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[2] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[3] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[4] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[5] 黄东男, 于洋, 李有来, 左壮壮. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析[J]. 材料工程, 2014, 0(9): 68-75.
[6] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
[7] 杨亮, 李嘉荣, 金海鹏, 谢洪吉, 韩梅, 刘世忠. DD6单晶精铸薄壁试样定向凝固过程数值模拟[J]. 材料工程, 2014, 0(11): 15-22.
[8] 强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J]. 材料工程, 2014, 0(11): 97-101.
[9] 王卺, 赵国群, 王广春, 袁君. 应力三轴度及轧辊凸度对93钨合金板材轧制损伤的影响[J]. 材料工程, 2014, 0(10): 27-33.
[10] 于超, 任会兰, 宁建国. 钨合金力学性能表征分子动力学模拟[J]. 材料工程, 2014, 0(10): 82-89.
[11] 刘庆生, 何文, 曾芳金, 薛济来. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, 0(7): 92-96.
[12] 廖娟, 凌泽民, 彭小洋. 考虑相变的铝合金管焊接残余应力数值模拟[J]. 材料工程, 2013, 0(4): 34-38.
[13] 黄东男, 于洋, 宁宇, 马玉. 分流模挤压非对称断面铝型材有限元数值模拟分析[J]. 材料工程, 2013, 0(3): 32-37.
[14] 赵彦玲, 周凯, 车万博, 铉佳平, 车春雨. 铝硅合金轧制中增强体颗粒应力集中数值模拟[J]. 材料工程, 2013, 0(3): 51-54,60.
[15] 王晓霞, 王成国, 贾玉玺, 罗玲. 热固性树脂固化动力学模型简化的新方法[J]. 材料工程, 2012, 0(6): 67-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn