Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (6): 9-16    DOI: 10.11868/j.issn.1001-4381.2016.06.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Al-4%Cu凝固过程枝晶生长的数值模拟
张敏(), 徐蔼彦, 汪强, 李露露
西安理工大学 材料科学与工程学院, 西安 710048
Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy
Min ZHANG(), Ai-yan XU, Qiang WANG, Lu-lu LI
School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(13428 KB)   HTML ( 24 )  
输出: BibTeX | EndNote (RIS)      
摘要 

改进了模拟枝晶生长常用的二维元胞自动机和有限差分(CA-FD)模型,新模型引入扰动函数来控制二、三次枝晶的生长;在枝晶生长过程中,将溶质浓度明确地分为液相溶质浓度和固相溶质浓度两部分;并在溶质再分配与扩散过程中采用八邻位差分以减少网格形状导致溶质扩散的各向异性。模拟了Al-4%Cu二元合金过冷熔体中,单个和多个等轴晶沿不同择优方向生长及单方向和多方向柱状树枝晶竞争生长过程中的枝晶形貌、液相溶质浓度和固相溶质浓度分布情况。模拟结果表明:扰动的引入能够促使枝晶产生分支,并控制二、三次枝晶的生长速率;液/固相溶质计算模型能够准确地模拟出枝晶生长过程中液/固相溶质分布;此外改进后的模型实现了枝晶沿任意方向的竞争生长。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏
徐蔼彦
汪强
李露露
关键词 数值模拟元胞自动机法枝晶形貌溶质浓度    
Abstract

A new two-dimensional cellular automata and finite difference (CA-FD) model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.

Key wordsnumerical simulation    cellular automaton method    dendritic morphology    solute concentration
收稿日期: 2014-05-23      出版日期: 2016-06-13
基金资助:国家自然科学基金资助项目(51274162);国家高技术研究发展计划(863计划)(2013AA031303);陕西省教育厅专项科研计划项目(14JK1539)
通讯作者: 张敏     E-mail: zhmmn@xaut.edu.cn
作者简介: 张敏(1967-),男,博士,教授,博士生导师,主要从事焊接成型过程的力学行为及其结构质量控制焊接和凝固过程的组织演变行为及其先进焊接材料的研究工作,联系地址:陕西省西安市金花南路5号西安理工大学(710048),E-mail:zhmmn@xaut.edu.cn
引用本文:   
张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
Min ZHANG, Ai-yan XU, Qiang WANG, Lu-lu LI. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy. Journal of Materials Engineering, 2016, 44(6): 9-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.002      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/9
TL/℃CL0/%k0mL/(k·%-1)DL/(m2·s-1)DS/(m2·s-1)Γ/(m·k)μ(m·(s·k)-1)δtδk
64840.17-2.63×10-93×10-132.4×10-72×10-30.30.3
Table 1  Al-Cu合金热物性参数
Fig.1  单个等轴晶生长0.002s模拟结果
Fig.2  不同扰动因子作用下枝晶生长形貌
Fig.3  不同择优取向时枝晶生长形貌(1) 及液相中溶质浓度分布(2)
Fig.4  多个等轴晶生长形貌及溶质浓度分布
Fig.5  多个柱状晶生长形貌及溶质浓度分布
1 HE Y Z, DING H L, LIU L F, et al Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle[J]. Materials Science and Engineering: A, 2006, 429 (1-2): 236- 246.
2 陈晋. 基于元胞自动机方法的凝固过程微观组织数值模拟[D]. 南京: 东南大学, 2005.
2 CHEN J. Numerical simulation on solidification microstructures using cellular automaton method[D]. Nanjing: Southeast University, 2005.
3 HONG C P, ZHU M F, LEE S Y Modeling of dendritic growth in alloy solidification with melt convection[J]. Tech Science Press, 2006, 2 (4): 247- 260.
4 LI Q, GUO Q Y, LI R D Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process[J]. Chinese Physics, 2006, 15 (4): 778- 791.
5 LI J J, WANF J C, YANG G C Phase-field simulation of microstructure development involving nucleation and crystallographic orientations in alloy solidification[J]. Journal of Crystal Growth, 2007, 309 (1): 65- 69.
6 LI D, LI R, ZHANG P W A cellular automaton technique for modelling of a binary dendritic growth with convection[J]. Applied Mathematical Modelling, 2007, 31 (6): 971- 982.
7 YIN H, FELICELLI S D Dendrite growth simulation during solidification in the lens process[J]. Acta Materialia, 2010, 58 (4): 1455- 1465.
8 陈守东, 陈敬超, 吕连灏 基于CA-FE的双辊连铸纯铝凝固组织模拟[J]. 材料工程, 2012, (10): 48- 53.
8 CHEN S D, CHEN J C, LU L H Numerical simulation of solidified microstructure of Twin-roll continuous casting pure aluminum based on CA-FE method[J]. Journal of Materials Engineering, 2012, (10): 48- 53.
9 MINORU Y, YUKINOBU N, HIROSHI H, et al Numerical simulation of solidification structure formation during continuous casting in Fe-0[J]. 7mass%C alloy using cellular automaton method[J]. ISIJ International, 2006, 46 (6): 903- 908.
10 付振南, 许庆彦, 熊守美 基于概率捕获模型的元宝自动机方法模拟镁合金枝晶生长过程[J]. 中国有色金属学报, 2005, 41 (6): 583- 587.
10 FU Z N, XU Q Y, XIONG S M Numerical simulation on dendrite growth process of Mg alloy using cellular automaton method based on probability capturing model[J]. The Chinese Journal of Nonferrous Metals, 2005, 41 (6): 583- 587.
11 ZHAN X H, WEI Y H, DONG Z B Cellular automaton simulation of grain growth with different orientation angles during solidification process[J]. Journal of Materials Processing Technology, 2008, 208 (1-3): 1- 3.
12 HAKAN H, MATTI R Microstructure evolution influenced by dislocation density gradients modeled in a reaction diffusion system[J]. Computational Materials Science, 2013, 67, 373- 383.
13 MOHSEN A Z, HEBI Y Comparison of cellular automaton and phase field models to simulate dendrite growth in hexagonal crystals[J]. Materials Science Technology, 2012, 28 (2): 137- 146.
14 ZHU M F, DAI T, LEE S Y, et al Modeling of solutal dendritic growth with melt convection[J]. Computers and Mathematics with Applications, 2008, 55 (7): 1620- 1628.
15 LUO S, ZHU M Y A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method[J]. Computational Materials Science, 2013, 71, 10- 18.
[1] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[2] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[3] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[4] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[5] 廖向娜, 贺雍律, 张鉴炜, 鞠苏, 江大志, 刘佳音, 刘钧. CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展[J]. 材料工程, 2020, 48(12): 1-11.
[6] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[7] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[8] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[9] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[10] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[11] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[12] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[13] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[14] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[15] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn