Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 17-23    DOI: 10.11868/j.issn.1001-4381.2016.06.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
钎焊过程原位合成Al-Si-Cu合金及接头性能
龙伟民1, 路全彬1, 何鹏2, 薛松柏3, 吴铭方4, 薛鹏5
1. 郑州机械研究所 新型钎焊材料与技术国家重点实验室, 郑州 450001;
2. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001;
3. 南京航空航天大学 材料科学与技术学院, 南京 210016;
4. 江苏科技大学 先进焊接技术省级重点实验室, 江苏 镇江 212003;
5. 南京理工大学 材料科学与工程学院, 南京 210094
In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint
LONG Wei-min1, LU Quan-bin1, HE Peng2, XUE Song-bai3, WU Ming-fang4, XUE Peng5
1. State Key Laboratory of Advanced Brazing Filler Metals & Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, China;
2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
3. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
4. Provincial Key Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China;
5. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
全文: PDF(15726 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 Al-Si-Cu基钎料熔点低、强度高,非常适用于铝合金的钎焊。但位于三元共晶成分点附近的Al-Si-Cu合金由于含有大量的CuAl2脆性金属间化合物,无法采用常规塑性加工方法成形,因此限制了其使用范围。为克服上述不足,设计一种使用AlSi-CuAl复合焊丝在钎焊过程中原位合成Al-Si-Cu钎料的方法,并对其钎焊接头组织与性能进行研究。结果表明:采用的复合焊丝外层为AlSi合金,内层为CuAl合金粉,两者熔点接近。复合钎料的加工性能远优于同成分的Al-Si-Cu钎料。使用复合焊丝感应钎焊3A21铝合金,钎焊过程中两种合金几乎同时熔化,经瞬间保温后可充分熔合并形成Al-Si-Cu钎料,获得成分均匀、界面结合良好的钎缝,钎焊接头抗剪强度高于采用常规Al-Si-Cu钎料钎焊的接头抗剪强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙伟民
路全彬
何鹏
薛松柏
吴铭方
薛鹏
关键词 Al-Si-Cu钎料原位合成复合焊丝钎焊    
Abstract:The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.
Key wordsAl-Si-Cu brazing filler metal    in situ synthesis    composite brazing wire    braze
收稿日期: 2015-11-15      出版日期: 2016-06-13
1:  TG454  
通讯作者: 龙伟民(1966-),男,研究方向:新型钎焊材料及其生产技术、钎焊工艺与设备研发及应用,地址:河南省郑州市高新区科学大道红松路郑州机械研究所新型钎焊材料与技术国家重点实验室(450001),E-mail:brazelong@163.com     E-mail: brazelong@163.com
引用本文:   
龙伟民, 路全彬, 何鹏, 薛松柏, 吴铭方, 薛鹏. 钎焊过程原位合成Al-Si-Cu合金及接头性能[J]. 材料工程, 2016, 44(6): 17-23.
LONG Wei-min, LU Quan-bin, HE Peng, XUE Song-bai, WU Ming-fang, XUE Peng. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint. Journal of Materials Engineering, 2016, 44(6): 17-23.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.003      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/17
[1] 龙伟民, 张青科, 朱坤, 等. 绿色钎焊材料及无害化钎焊技术的发展[J]. 焊接, 2014, (1):3-7. LONG W M, ZHANG Q K, ZHU K, et al. Recent development of eco-friendly brazing and soldering materials[J]. Welding Technology, 2014, (1):3-7.
[2] 张新明, 吴泽政, 刘胜胆, 等. 固溶处理对7A55铝合金局部腐蚀性能的影响[J]. 材料工程, 2014, (4):26-33. ZHANG X M, WU Z Z, LIU S D, et al. Influence of solution heat treatment on localized corrosion of 7A55 aluminum alloy[J]. Journal of Materials Engineering, 2014, (4):26-33.
[3] 龙伟民, 乔培新, 曾大本, 等. 自钎剂铝钎料的研制与应用前景[J]. 焊接技术, 2002, 31(5):33-34. LONG W M, QIAO P X, ZENG D B, et al. Development and application prospect of self-flux Al brazing alloy[J]. Welding Technology, 2002, 31(5):33-34.
[4] 祁星, 宋仁国, 祁文娟, 等. 极化电位对7050铝合金应力腐蚀敏感性和膜致应力的影响[J]. 航空材料学报, 2014, 34(2):40-45. QI X, SONG R G, QI W J. Influence of polarization potential on stress corrosion cracking susceptibility and film-induced stress of 7050 aluminum alloy[J]. Journal of Aeronautical Materials, 2014, 34(2):40-45.
[5] 孙文会, 张永安, 李锡武, 等. 固溶热处理对7136铝合金组织性能的影响[J]. 航空材料学报, 2014, 34(3):35-41. SUN W H,ZHANG Y A,LI X W, et al. Effect of solution treatment on microstructures and mechanical properties of 7136 aluminum alloy[J]. Journal of Aeronautical Materials, 2014, 34(3):35-41.
[6] 龙伟民, 于新泉, 黄俊兰, 等. 药芯铝焊丝的发展及应用展望[J]. 焊接, 2009, (4):11-14. LONG W M, YU X Q, HUANG J L, et al. Development and application prospect of flux cored aluminum wire[J]. Welding & Joining, 2009, (4):11-14.
[7] CHANG S Y, TSAO L C, LI T Y, et al. Joining 6061 aluminum alloy with Al-Si-Cu filler metals[J]. Journal of Alloys and Compounds, 2009,488(1):174-180.
[8] 俞伟元, 陈学定, 路文江. 快速凝固Al-Si-Cu基钎料的性能[J]. 焊接学报, 2004, 25(2):69-72. YU W Y, CHEN X D, LU W J. Properties of melt-spun Al-Si-Cu brazing foils[J]. Transactions of the China Welding Institution, 2004, 25(2):69-72.
[9] COOPER K P, JONES H N. Microstructure evolution rapidly solidified Al-Cu-Si ternary alloys[J]. Journal of Material Science, 2001, (10):705-709.
[10] 冯华, 王泽华, 林萍华, 等. 快速凝固Al-Si-Cu合金钎料的组织和熔点研究[J]. 轻合金加工技术, 2009, 37(2):14-17. FENG H, WANG Z H, LIN P H, et al. Research on microstructure and melting point of rapidly solidified brazing ribbon Al-Si-Cu alloy[J]. Light Alloy Fabrication Technology, 2009, 37(2):14-17.
[11] 龙伟民, 乔培新, 王海滨, 等. 粉末合成钎料的探讨[J]. 机械工程学报, 2001, 37(10):107-108. LONG W M, QIAO P X, WANG H B, et al. Discussion of powder synthetic filler materials[J]. Chinese Journal of Mechanical Engineering, 2001, 37(10):107-108.
[12] ZHANG J J, SHEN B, ZHAI J W, et al. In situ synthesis of Ba0.5Sr0.5TiO3-Mg2TiO4 composite ceramics and their effective dielectric response[J]. Scripta Materialia, 2013, (69):258-261.
[13] 鲍丽, 龙伟民, 裴夤崟, 等. CuZnSnSi合金钎料相变过程的热分析动力学[J]. 焊接学报, 2013, 34(10):55-58. BAO L, LONG W M, PEI Y Y, et al. Thermal kinetics for phase transformation of CuZnSnSi alloy[J]. Transactions of the China Welding Institution, 2013, 34(10):55-58.
[14] LONG W M, ZHANG G X, ZHANG Q K. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J]. Scripta Materialia, 2016, 110:41-43.
[15] 张瑞英, 陈素娟, 史志铭, 等. Mg对原位合成TiC-Al2O3/Al复合材料组织与耐磨性的影响[J]. 材料工程, 2014, (10):65-70. ZHANG R Y, CHEN S J, SHI Z M,et al. Effect of Mg on microstructures and abrasive resistance of in-situ synthesis TiC-Al2O3/Al Composites[J]. Journal of Materials Engineering, 2014, (10):65-70.
[16] HE P, YANG M X, LIN T S, et al. Improving the strength of brazed joints with in situ synthesized TiB Whiskers[J]. Journal of Alloys and Compounds, 2011, 509:L289-L292.
[17] YANG M X, LIN T S, HE P, et al. In situ synthesis of TiB whisker reinforcements in the joints of Al2O3/TC4 during brazing[J]. Materials Science and Engineering:A, 2011, 528(9):3520-3525.
[18] LIU J L, ZHANG Y Q, LI Y P, et al. In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior[J]. Electrochim Acta, 2015, 173:148-155.
[19] 张国伟, 包晔峰, 蒋永锋, 等. Al-Si-Cu基钎料钎焊6063铝合金钎焊接头的显微组织及剪切性能[J]. 上海交通大学学报, 2010, 44(增刊):66-69. ZHANG G W, BAO Y F, JIANG Y F, et al. Microstructure and shearing strength of 6063 aluminium flux-assisted brazed joint with Al-Si-Cu based filler metal[J]. Journal of Shanghai Jiaotong University, 2010, 44(Suppl):66-69.
[20] TSAO L C, WENG W P, CHENG M D, et al. Brazeability of a 3003 aluminum alloy with Al-Si-Cu-based filler metals[J]. Journal of Materials Engineering and Performance, 2002, 11(4):360-364.
[21] LONG W M, BAO L, MA J, et al. Representation system of cleanness of filler metal[J]. China Welding, 2015, 24(2):12-17.
[22] 龙伟民, 张冠星, 张青科, 等. 钎焊过程中原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11):1-4. LONG W M, ZHANG G X, ZHANG Q K, et al. In-situ synthesis of high strength Ag brazing filler metals during brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11):1-4.
[1] 李红, 陶博浩, 栗卓新, 郭福. 超声振动与激光加热耦合条件下Al基钎料在TiNi形状记忆合金表面润湿铺展行为[J]. 材料工程, 2016, 44(3): 66-71.
[2] 徐冬霞, 田金峰, 王东斌, 牛济泰, 薛行雁, 孙华为. Al-20Cu-9.6Si-xEr钎料对SiCp/A356复合材料真空钎焊接头组织与性能的影响[J]. 材料工程, 2016, 44(1): 60-65.
[3] 李小强, 敖敬培, 李子阳, 李力, 屈盛官. CuMnNiCo钎料钎焊MGH956合金接头组织及力学性能研究[J]. 材料工程, 2015, 43(5): 21-26.
[4] 赵磊, 李晓红, 侯金保, 孙强. 有机胶体黏附力作用下的钎焊工艺[J]. 材料工程, 2015, 43(12): 63-68.
[5] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[6] 邵长斌, 熊江涛, 孙福, 张赋升, 李京龙. TC4钛合金与YG8硬质合金高频感应钎焊组织及性能研究[J]. 材料工程, 2014, 0(9): 26-31.
[7] 黄健康, 邵玲, 石玗, 顾玉芬. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014, 0(3): 21-26,33.
[8] 张瑞英, 陈素娟, 史志铭, 张连凤. Mg对原位合成TiC-Al2O3/Al复合材料组织与耐磨性的影响[J]. 材料工程, 2014, 0(10): 65-70.
[9] 李卓然, 徐晓龙, 王征征. ZrB2-SiC钎焊接头界面产物及反应层生长规律[J]. 材料工程, 2013, 0(12): 44-48.
[10] 张培磊, 姚舜, 于治水, 丁敏, 徐培全. 亚共晶钎缝组织分析与冷却速率对其形态的影响[J]. 材料工程, 2011, 0(4): 25-28.
[11] 陈波, 熊华平, 沈强, 王传彬, 李俊国. 钎焊方法制备Ti/TiAl/Al系变密度功能梯度材料[J]. 材料工程, 2011, 0(2): 56-59.
[12] 梁芳慧, 李彤, 陈波, 毛唯, 黄永玲, 周学玉. 钛合金髋关节假体纯钛/钛合金表面多孔层研究[J]. 材料工程, 2010, 0(6): 68-72.
[13] 刘文慧, 郭绍庆, 叶雷, 毛唯, 周标. 采用BNi68CrWB钎料钎焊GH783的接头组织与性能[J]. 材料工程, 2010, 0(6): 73-77,83.
[14] 薛行雁, 熊进辉, 黄继华, 张华, 赵兴科, 王志平. AgAlTi-C钎焊Cf/SiC复合材料与TC4接头组织结构[J]. 材料工程, 2010, 0(5): 68-71.
[15] 于治水, 李瑞峰, 祁凯. 辅助电磁场作用下的铝基复合材料钎焊接头界面微观组织及其分析[J]. 材料工程, 2010, 0(2): 78-80,90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn