Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 50-55    DOI: 10.11868/j.issn.1001-4381.2016.06.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
氧燃比对爆炸喷涂碳化钨涂层结构和性能的影响
赵立英1, 刘平安2
1. 佛山市康泰威新材料有限公司, 广东 佛山 528216;
2. 华南理工大学 材料科学与工程学院, 广州 510640
Effects of Oxygen-fuel Ratio on Structure and Property of Detonation Gun Sprayed WC Coating
ZHAO Li-ying1, LIU Ping-an2
1. Foshan Kangtaiwei Advanced Material Co., Ltd., Foshan 528216, Guangdong, China;
2. College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(5779 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过优化爆炸喷涂工艺制备硬度高、结构均匀致密的碳化钨涂层,用扫描电子显微镜(SEM)观察喷涂粉末的形貌、用显微硬度计测试涂层的维氏显微硬度、用光学显微镜、X射线衍射(XRD)和能谱仪(EDS)观察分析涂层的结构组成。结果表明:提高氧燃比,涂层的硬度和结合强度先增后降;孔隙率则先降后增。氧燃比较低,粒子飞行速率低和熔融不足是涂层致密性和力学性能下降的主要原因;氧燃比过高,粒子脱碳和黏结相在冷却过程中收缩不均匀是影响涂层结构和性能的决定因素。氧燃比为1.15时可有效减少涂层的氧化和脱碳,涂层的综合性能最优;截面维氏显微硬度HV0.3达到1178kg·mm-2、孔隙率为0.86%,涂层与基材间的结合强度达到152MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立英
刘平安
关键词 氧燃比爆炸喷涂碳化钨涂层维氏显微硬度孔隙率    
Abstract:The tungsten carbide coating with both high hardness and dense microstructure was prepared by optimizing the detonation gun spraying parameters. The phase identifications and microstructure of the coating were observed and analyzed by optical microscope, X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The results show that with the increase of oxygen-fuel ratio, the hardness and adhesive strength of the coating firstly enhance and then decrease, while porosities firstly decrease and then increase. When the oxygen fuel ratio is too low, slow particle flight speed and insufficient melt are the main reasons for the degradation of the coating compactness and mechanical properties. When the oxygen fuel ratio is too high, particle decarburization and binder phase nonuniform contract in the cooling process are the determining factors to the coating structure and properties. When the oxygen-fuel ratio is 1.15, comprehensive performance of the coating is optimal, and the oxidation and decarburization of the coating can be effectively reduced. The Vickers microhardness HV0.3 of cross-section reaches 1178kg·mm-2, the porosity is 0.86%, and the bonding strength between the coating and substrate is 152MPa.
Key wordsoxygen-fuel ratio    detonation gun spraying    tungsten carbide coating    Vickers microhardness    porosity
收稿日期: 2014-08-11      出版日期: 2016-06-13
中图分类号:  TG174.44  
通讯作者: 赵立英(1978-),男,博士,高级工程师,从事表面防护材料研究,联系地址:广东省佛山市南海区丹灶五金工业区博金路6号佛山市康泰威新材料有限公司(528216),E-mail:feiying99998888@163.com     E-mail: feiying99998888@163.com
引用本文:   
赵立英, 刘平安. 氧燃比对爆炸喷涂碳化钨涂层结构和性能的影响[J]. 材料工程, 2016, 44(6): 50-55.
ZHAO Li-ying, LIU Ping-an. Effects of Oxygen-fuel Ratio on Structure and Property of Detonation Gun Sprayed WC Coating. Journal of Materials Engineering, 2016, 44(6): 50-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.008      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/50
[1] SOUZA V A D, NEVILLE A.Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion-corrosion environments[J]. Wear, 2007, 263(1-6):339-341.
[2] MURTHY J K N, RAO D S, VENKATARAMAN B. Effect of grinding on the erosion behaviour of a WC-Co-Cr coating deposited by HVOF and detonation gun spray processes[J]. Wear, 2001, 249(7):592-600.
[3] KIMA J H, KIMB M C, PARKA C G. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique[J]. Surface and Coatings Technology, 2003, 168(2-3):275-280.
[4] DU H, SUN C, HUA W G, et al. Structure, mechanical and sliding wear properties of WC-Co/MoS2-Ni coatings by detonation gun spray[J]. Materials Science and Engineering:A, 2007, 445-446:122-134.
[5] 王铁刚, 宋丙红, 华伟刚, 等. 工艺参数对爆炸喷涂WC-Co涂层性能均匀性的影响[J]. 金属学报, 2011, 47(1):115-122. WANG T G, SONG B H, HUA W G, et al. Influence of process parameters on the performance uniformity of detonation gun sprayed WC-Co coatings[J]. Acta Metallurgica Sinica, 2011, 47(1):115-122.
[6] 张锤, 柏洪武, 王群, 等. 氧燃比对爆炸喷涂WC-17Co涂层组织和性能的影响[J]. 热加工工艺, 2013, 42(4):145-148. ZHANG C, BAI H W, WANG Q, et al. Effect of ratio of oxygen and fuel on microstructure performance of WC-17Co coating deposition with detonation gun spray process[J]. Hot Working Technology, 2013, 42(4):145-148.
[7] 高俊国, 陆峰, 王长亮, 等. 氧燃充枪比对爆炸喷涂CoCrAlYTa涂层抗氧化性能的影响[J]. 材料工程, 2013, (4):28-33. GAO J G, LU F, WANG C L, et al. Influence of oxygen/fuel in-gun ratio on oxidation resistance of CoCrAlYTa coating prepared by detonation gun spraying[J]. Journal of Materials Engineering, 2013, (4):28-33.
[8] 傅迎庆, 郭学平, 张立志, 等. 爆炸喷涂工艺参数对WC-Co涂层结构和硬度的影响[J]. 大连海事大学学报, 2004,30(4):60-62. FU Y Q, GUO X P, ZHANG L Z, et al. Effect of detonation gun spraying technological parameters on structure and hardness of WC-Co coat[J]. Journal of Dalian Maritime University, 2004, 30(4):60-62.
[9] PARK S Y, KIM M C, PARK C G. Mechanical properties and microstructure evolution of the nano WC-Co coatings fabricated by detonation gun spraying with post heat treatment[J]. Materials Science and Engineering:A, 2007, 449-451:894-897.
[10] DU H, HUA W G, LIU J G, et al.Influence of process variables on the qualities of detonation gun sprayed WC-Co coatings[J]. Materials Science and Engineering:A, 2005, 408(1-2):202-210.
[11] 柏洪武. 爆炸喷涂WC/Co涂层组织性能研究[D]. 长沙:湖南大学, 2010. BAI H W. Study on microstructure and abrasive wear of WC/Co coating deposited by denotation spraying[D]. Changsha:Hunan University, 2010.
[12] LIMA R S, KUCUK A, BERNDT C C. Integrity of nanostructured partially stabilized zirconia after plasma spray processing[J]. Materials Science and Engineering:A, 2001, 313(1-2):75-82.
[13] MATEJICEK J, SAMPATH S, BRAND P C, et al. Quenching, thermal and residual stress in plasma sprayed deposits:NiCrAlY and YSZ coatings[J]. Acta Materialia, 1999, 47(2):607-617.
[14] 査柏林, 高双林, 乔素磊, 等. 超音速火焰喷涂参数及粉末粒度对WC-12Co涂层弹性模量的影响[J]. 材料工程, 2015, 43(4):92-97. ZHA B L, GAO S L, QIAO S L, et al. Influence of HOV-AF parameters and particle size on elastic modulus of WC-12Co coatings[J]. Journal of Materials Engineering, 2015, 43(4):92-97.
[15] KUCUK A, LIMA R S, BERNDT C C. Influence of plasma spray parameters on in-flight characteristics of ZrO2-8wt% Y2O3 ceramic particles[J]. Journal of the American Ceramic Society, 2001, 84(4):685-692.
[1] 崔永静, 郝晶莹, 王长亮, 宇波, 汤智慧. 树脂基复合材料表面爆炸喷涂铝涂层性能研究[J]. 材料工程, 2018, 46(6): 120-124.
[2] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[3] 杜际雨, 李方义, 鹿海洋, 商建通, 李振. 大气等离子喷涂NiCrBSi-Mo/Ni涂层中黏结层对NiCrBSi-Mo复合工作层性能的影响[J]. 材料工程, 2017, 45(9): 86-92.
[4] 王铁钢, 李柏松, 阎兵, 范其香, 刘艳梅, 宫骏, 孙超. 爆炸喷涂WC-Co/MoS2-Ni多层复合自润滑涂层的摩擦学行为[J]. 材料工程, 2017, 45(3): 73-79.
[5] 张海军, 周储伟. 基于显微CT图像的细编穿刺碳/碳复合材料细观力学模型[J]. 材料工程, 2016, 44(5): 65-71.
[6] 徐立新, 管厚兵, 杨智伟, 郝向忠. 真空吸浆法制备C/SiC复合材料及力学性能研究[J]. 材料工程, 2015, 43(12): 10-16.
[7] 马志远, 罗忠兵, 林莉. 基于RVM表征热障涂层孔隙率与孔隙形貌对超声纵波声速的影响[J]. 材料工程, 2014, 0(5): 86-90.
[8] 高俊国, 陆峰, 王长亮, 郭孟秋, 崔永静. 氧燃充枪比对爆炸喷涂CoCrAlYTa涂层抗氧化性能的影响[J]. 材料工程, 2013, 0(4): 28-33.
[9] 牟云飞, 林莉, 郭广平, 李喜孟. CFRP随机孔隙模型及孔隙率超声检测数值模拟[J]. 材料工程, 2010, 0(1): 54-57,61.
[10] 李东海, 胡明, 孙凤云, 陈鹏, 孙鹏. 多孔硅气体传感器的制备及其气敏性能的研究[J]. 材料工程, 2009, 0(4): 71-74.
[11] 王曙东, 尹桂波, 张幼珠, 王红卫, 蒋新建, 董智慧. 静电纺PLA管状支架的结构及其生物力学性能[J]. 材料工程, 2008, 0(10): 316-320.
[12] 潘继岗, 樊自拴, 孙冬柏, 俞宏英, 李辉勤, 王旭东, 孟惠民. 超音速火焰喷涂Fe基非晶合金涂层的性能研究[J]. 材料工程, 2005, 0(9): 53-55.
[13] 刘志真, 李宏运, 益小苏. 孔隙率对聚酰亚胺复合材料力学性能的影响[J]. 材料工程, 2005, 0(9): 56-58.
[14] 毕燕洪, 金志浩. C/C复合材料的吸湿性研究进展[J]. 材料工程, 2003, 0(3): 44-46.
[15] 揭晓华, 潘振鹏, 卢国辉, 谢光荣, 曾鹏, 黄拿灿. 工艺参数对Ni包WC爆炸喷涂涂层组织与耐磨性能的影响[J]. 材料工程, 2003, 0(11): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn