Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 56-62    DOI: 10.11868/j.issn.1001-4381.2016.06.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
第三组元对Mg-Sn合金铸态组织与力学性能的影响
黄正华1, 刘汪涵博1,2, 戚文军1, 徐静1
1. 广州有色金属研究院, 广州 510650;
2. 中南大学 材料科学与工程学院, 长沙 410083
Effects of Third Constituent on As-cast Microstructures and Mechanical Properties of Mg-Sn Alloy
HUANG Zheng-hua1, LIU Wang-hanbo1,2, QI Wen-jun1, XU Jing1
1. Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510650, China;
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
全文: PDF(9296 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用光学显微镜、扫描电子显微镜和X射线衍射仪分析Mg-3.52Sn-xM和Mg-6.54Sn-xM(M=Al,Zn,Nd,Gd)合金的铸态组织和相组成,测试其拉伸力学性能。结果表明:在Mg-3.52Sn合金中分别添加0.91% (质量分数,下同)Al和1.03%Zn后,粗大树枝晶有所细化,小块状Mg2Sn相极少;分别添加0.92%Nd和1.10% Gd后,树枝晶明显弱化,出现较多的小块状或细短杆状化合物Mg-Sn-Nd和Mg-Sn-Gd。在Mg-6.54Sn合金分别添加0.93%Al和1.08%Zn后,树枝晶明显细化,原先趋于连续网状分布的Mg2Sn相有所破碎;分别添加0.86%Nd和0.74%Gd后,树枝晶亦明显弱化,Mg2Sn相已完全破碎成小块状并呈弥散分布或出现明显破碎,同样出现较多的小块状或细短杆状化合物Mg-Sn-Nd和Mg-Sn-Gd。在Mg-3.52Sn和Mg-6.54Sn二元合金中添加约1%的Al和Zn能有效提高其室温和高温拉伸力学性能,而分别添加约1%的Nd和Gd则不能有效提高其室温和高温拉伸力学性能,且Nd的弱化效果更明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄正华
刘汪涵博
戚文军
徐静
关键词 耐热镁合金Mg-Sn系合金合金化显微组织力学性能    
Abstract:As-cast microstructures and phase compositions of Mg-3.52Sn-xM and Mg-6.54Sn-xM (M=Al, Zn, Nd, Gd) alloys were investigated by optical microscope, scanning electron microscope and X-ray diffraction. Meanwhile, the tensile mechanical properties were tested. The results show that the coarse dendrite is refined slightly and few block Mg2Sn phase still exists when 0.91% (mass fraction, the same below) Al and 1.03%Zn are added into Mg-3.52Sn alloy, respectively. When 0.92%Nd and 1.10%Gd are added respectively, the dendrite weakens obviously and many small block or fine short rod-shaped compounds Mg-Sn-Nd and Mg-Sn-Gd can be observed. When 0.93%Al and 1.08%Zn are added into Mg-6.54Sn respectively, the dendrite is refined obviously and Mg2Sn phase tending to precipitate in the state of continuous net begins to break slightly. When 0.86%Nd and 0.74%Gd are added respectively, the dendrite weakens significantly and Mg2Sn phase has already broken into small block completely or significantly. Meanwhile, many small block or fine short rod-shaped compounds Mg-Sn-Nd and Mg-Sn-Gd can also be observed. The respective addition of about 1%Al and Zn into the Mg-3.52Sn and Mg-6.54Sn binary alloys respectively can enhance the tensile mechanical properties namely the ambient and elevated temperatures effectively, while the respective addition of about 1%Nd and Gd cannot enhance them effectively, especially for the addition of Nd.
Key wordsheat-resistant magnesium alloy    Mg-Sn series alloy    alloying    microstructure    mechanical property
收稿日期: 2014-11-13      出版日期: 2016-06-13
中图分类号:  TG146  
通讯作者: 黄正华(1978-),男,博士,高级工程师,主要从事高性能镁合金的开发及应用,联系地址:广东省广州市天河区长兴路363号广州有色金属研究院金属加工与成型技术研究所(510650),E-mail:zhhuang@live.cn     E-mail: zhhuang@live.cn
引用本文:   
黄正华, 刘汪涵博, 戚文军, 徐静. 第三组元对Mg-Sn合金铸态组织与力学性能的影响[J]. 材料工程, 2016, 44(6): 56-62.
HUANG Zheng-hua, LIU Wang-hanbo, QI Wen-jun, XU Jing. Effects of Third Constituent on As-cast Microstructures and Mechanical Properties of Mg-Sn Alloy. Journal of Materials Engineering, 2016, 44(6): 56-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.009      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/56
[1] POLMEAR I J. Magnesium alloys and applications[J]. Materials Science and Technology, 1994, 10(1):1-16.
[2] 陈振华. 耐热镁合金[M]. 北京:化学工业出版社, 2006.
[3] 黄正华, 戚文军, 徐静, 等. 铸态和固溶态Mg-Sn二元合金的组织与力学性能[J]. 材料研究与应用, 2014, 8(4):221-227. HUANG Z H, QI W J, XU J, et al. Microstructures and mechanical properties of as-cast and solution-treated Mg-Sn binary alloys[J]. Materials Research and Application, 2014, 8(4):221-227.
[4] SASAKI T T, OH-ISHI K, OHKUBO T, et al. Effect of double aging and microalloying on the age hardening behavior of a Mg-Sn-Zn alloy[J]. Materials Science and Engineering:A, 2011, 530:1-8.
[5] SASAKI T T, OH-ISHI K, OHKUBO T, et al. Enhanced age hardening response by the addition of Zn in Mg-Sn alloys[J]. Scripta Materialia, 2006, 55:251-254.
[6] GIBSON M A, FANG X, BETTLESC C J, et al. The effect of precipitate state on the creep resistance of Mg-Sn alloys[J]. Scripta Materialia, 2010, 63:899-902.
[7] NAYYERI G, MAHMUDI R. Effects of Ca additions on the microstructural stability and mechanical properties of Mg-5% Sn alloy[J]. Materials & Design, 2011, 32(3):1571-1576.
[8] LIU H M, CHEN Y G, ZHAO H F, et al. Effects of strontium on microstructure and mechanical properties of as-cast Mg-5wt.% Sn alloy[J]. Journal of Alloys and Compounds, 2010, 504(2):345-350.
[9] LIU H M, CHEN Y G, TANG Y B, et al. The microstructure and mechanical properties of permanent mould cast Mg-5wt% Sn-(0-2.6)wt% Di alloys[J]. Materials Science and Engineering:A, 2006, 437(2):348-355.
[10] LIU H M, CHEN Y G, TANG Y B, et al. Tensile and indentation creep behavior of Mg-5% Sn and Mg-5% Sn-2% Di alloys[J]. Materials Science and Engineering:A, 2007, 464(1-2):124-128.
[11] 张丁非, 马春华, 张红菊, 等. 稀土Er对铸态合金Mg-5Sn组织及晶格常数的影响[J]. 稀有金属材料与工程, 2013, 42(12):2481-2485. ZHANG D F, MA C H, ZHANG H J, et al. Effect of Er-adding on microstructure and lattice parameter for Mg-5Sn as cast alloy[J]. Rare Metal Materials and Engineering, 2013, 42(12):2481-2485.
[12] WEI S H, CHEN Y G, TANG Y B, et al. Compressive creep behavior of Mg-Sn-La alloys[J]. Materials Science and Engineering:A, 2009, 508(1-2):59-63.
[13] 张果, 杜军, 李文芳, 等. Ca和La对Mg-5Sn-2Si合金组织和蠕变性能的影响[J]. 材料工程, 2013, (4):81-84. ZHANG G, DU J, LI W F, et al. Effects of Ca and La on microstructures and creep properties of Mg-5Sn-2Si alloy[J]. Journal of Materials Engineering, 2013, (4):81-84.
[14] KANG D H, PARK S S, KIM N J. Development of creep resistant die cast Mg-Sn-Al-Si alloy[J]. Materials Science and Engineering:A, 2006, 413-414:555-560.
[15] HUANG Z H, GUO X F, ZHANG Z M. Effects of Ce on damping capacity of AZ91D magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(2):311-315.
[16] DEAN J A. Lange's Handbook of Chemistry[M]. 15th ed. New York:McGraw-Hill Press, 1999.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[4] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[5] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[6] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[7] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[8] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[9] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[10] 周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
[11] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[12] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[13] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[14] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[15] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn