Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 76-83    DOI: 10.11868/j.issn.1001-4381.2016.06.012
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
溶致液晶模板法制备形貌可控的纳米氧化锆
何伟艳, 张赫, 刘进荣
内蒙古工业大学 化工学院, 呼和浩特 010051
Preparation of Zirconia Nanoparticles with Different Morphology Using Lyotropic Liquid Crystal Template
HE Wei-yan, ZHANG He, LIU Jin-rong
School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
全文: PDF(6694 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以ZrOCl2·8H2O及NH3·H2O为原材料,采用SDS/TritonX-100/H2O构成的六角相为模板制备氧化锆纳米粉体,确定pH对模板稳定性的影响,讨论氯氧化锆浓度对所制备样品粒径及形貌的影响。利用偏光显微镜对模板的稳定性进行表征,利用粒度分析仪、SEM及TEM对所制备粉体粒径及形貌进行表征,利用XRD对样品的晶型及纯度进行表征,同时采用FT-IR对氧化锆纳米粒子的形成机理进行推导。结果表明:在碱性条件下,模板的稳定性不受影响,酸性条件下模板的六角相织构消失;氯氧化锆浓度对所制备样品的形貌及粒径影响很大,增大氯氧化锆的浓度,所制备的样品形貌从球形到棉絮状;通过机理分析推测样品的前驱体与模板并没有发生络合作用,样品在模板的水层中间成核及生长,模板起到限制的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何伟艳
张赫
刘进荣
关键词 溶致液晶六角相纳米粒子氧化锆    
Abstract:Zirconia nanoparticles were prepared using ZrOCl2·8H2O and NH3·H2O as raw materials in the lyotropic hexagonal phase consisting of SDS/TritonX-100/H2O. Effects of pH on the phase structure stability of the template were determined. Effect of ZrOCl2 concentration on the size and morphology of zirconia were discussed. Polarizing optical microscopy was applied to investigate the stability of the hexagonal phase. The size and morphology of the nanoparticles were characterized by SEM, TEM and particle size analyzer. The crystalline structure and purity of the sample were characterized by XRD. In addition, the synthetic mechanism of zirconia nanoparticles in the lyotropic hexagonal phase were proposed by FT-IR. The results show that the hexagonal phase is stable in the condition of alkalinity and the hexagonal phase texture disappear in the conditions of acid; the size and morphology of the nanoparticles obtained are greatly affected by concentration of ZrOCl2. Morphology of samples changes from spherical-like particle to cotton-like particle with the increase of the concentration of ZrOCl2; the mechanism analysisresults show that complexation reaction between the precursor of the sample and the template does not occur, and crystal growth and nucleation of the zirconia nanoparticles are limited by a direct template route in the hexagonal phase lyotropic liquid crystal.
Key wordslyotropic liquid crystal    hexagonal phase    nanoparticle    zirconia
收稿日期: 2015-10-23      出版日期: 2016-06-13
中图分类号:  TQ174  
通讯作者: 刘进荣(1958-),男,博士,教授,主要从事工业结晶及纳米材料制备研究,联系地址:内蒙古自治区呼和浩特市内蒙古工业大学化工学院(010051),E-mail:jinrong_liu@126.com     E-mail: jinrong_liu@126.com
引用本文:   
何伟艳, 张赫, 刘进荣. 溶致液晶模板法制备形貌可控的纳米氧化锆[J]. 材料工程, 2016, 44(6): 76-83.
HE Wei-yan, ZHANG He, LIU Jin-rong. Preparation of Zirconia Nanoparticles with Different Morphology Using Lyotropic Liquid Crystal Template. Journal of Materials Engineering, 2016, 44(6): 76-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.012      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/76
[1] ABBAS H A, ARGIRUSIS C, KILO M. Preparation and conductivity of ternary scandia-stabilised zirconia[J]. Solid State Ionics, 2011, 184(1):6-9.
[2] TABOADA C, MILLAN R, MIGUEZ I. Hydrothermal synthesis and characterization of zirconia based catalysts[J]. Journal of Solid State Chemistry, 2013, 203(44):79-85.
[3] CHANDRA N, SINGH D K, SHARMA M, et al. Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation[J]. Journal of Colloid & Interface Science, 2010, 342(2):327-32.
[4] ÁGUILA G, JIMENEZ J, GUERRERO S,et al.A novel method for preparing high surface area copper zirconia catalysts[J]. Applied Catalysis A:General, 2009, 360(1):98-105.
[5] CHEN C Y, TSENG T K, TSAI S C, et al. Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis[J]. Ceramics International, 2008, 34(2):409-416.
[6] WANG S, LI X, ZHAI Y, et al. Preparation of homodispersed nano zirconia[J]. Powder Technology, 2006, 168(2):53-58.
[7] 余强, 陈阵, 范莹莹, 等. 纳米二氧化锆对制备PbO2-CeO2-氯氧化锆复合阳极材料的影响[J]. 材料工程, 2014, (5):40-45. YU Q, CHEN Z, FAN Y Y, et al. Influence of nano-ZrO2 on PbO2-CeO2-ZrO2 anode materials[J]. Journal of Materials Engineering, 2014, (5):40-45.
[8] HEIOTH S, GHISLENI R, LIPPERT T, et al. Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition[J]. Acta Materialia, 2011, 59(6):2330-2340.
[9] MA T, HUANG Y, YANG J, et al.Preparation of spherical zirconia powder in microemulsion system and its densification behavior[J]. Materials & Design, 2004,25(6):515-519.
[10] 杨絮飞, 黎维彬. 在水/环己烷微乳体系中制备纳米级氧化锆微粒[J]. 物理化学学报,2002,18(1):5-9. YANG X F, LI W B. Preparation of zirconia zanoparticles in reverse microemulsion[J]. Acta Physico-chimica Sinica,2002, 18(1):5-9.
[11] 方小龙, 杨传芳, 陈家镛,等. 用CTAB/正己醇/水/盐反胶团体系制备纳米氯氧化锆超细粉[J]. 化工冶金, 1997,18(1):67-71. FANG X L, YANG C F, CHEN J Y, et al. Synthesis of doped ZrO2 nanoparticles by CTAB/hexanol/water/salts[J]. Engineering Chemistry & Metallurgy, 1997, 18(1):67-71.
[12] HIEMENZ,PAUL C. Principles of Colloid and Surface Chemistry[M]. New York:Marcel Dekker, 1997.112-154.
[13] ZHANG L, HAN C, WANG H, et al. One-step synthesis of mesoporous nanosized sulfated zirconia via liquid-crystal template (LCT) method[J]. Materials Research Bulletin, 2012, 47(11):3931-3936.
[14] ZHAO D, ZHANG G, JIANG T, et al. Flow-injection chemiluminescence method for determination of critical micelle concentration of surfactants[J]. International Journal of Environmental Analytical Chemistry,2015, 95(11):1-9.
[15] CHUNG H, DUDLEY M, LARSON D J, et al. The mechanism of growth-twin formation in zincblende crystals:new insights from a study of magnetic liquid encapsulated czochralski-grown InP single crystals[J]. Journal of Crystal Growth, 1998, 187(1):9-17.
[16] SCHNITZER E, LICHTENBERG D, KOZLOV M M. Temperature-dependence of the solubilization of dipalmitoylphos phatidylch-oline(DPPC) by the non-ionic surfactant Triton X-100, kinetic and structural aspects[J]. Chemistry & Physics of Lipids, 2003, 126(1):55-76.
[17] KHIEW P S, RADIMAN S, HUANG N M, et al. Synthesis and characterization of copper sulfide nanoparticles in hexagonal phase lyotropic liquid crystal[J]. Journal of Crystal Growth, 2004, 268(1):227-237.
[18] KUDLA P, SOKOLOWSKI T, BLUMICH B, et al. Phase behavior of liquid-crystalline emulsion systems[J]. Journal of Colloid & Interface Science, 2010, 349(2):554-559.
[19] LI C, HE J, LIU J, et al. Self-assembly of lyotropic liquid crystal phases in ternary systems of 1,2-dimethyl-3-hexadecylimidazolium bromide/1-decanol/water[J]. Journal of Colloid & Interface Science, 2010, 342(2):354-360.
[20] LI D, FUJIKAWA D, YOSHIMURA T, et al. Additive-stabilized hexagonally ordered mixed lyotropic liquid crystal[J]. Journal of Molecular Liquids, 2008, 138(1-3):113-119.
[21] CAO H Q, QIU X Q, LUO B, et al. Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires[J]. Advanced Functional Materials, 2004, 14(3):243-246.
[22] FREITAS F G, SARMENTO V H V, SANTILLI C V, et al. Controlling the growth of zirconia needles precursor from a liquid crystal template[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2010, 353(1):77-82.
[23] SANTOS P D, SANTILLI V, PULCINELLI H, et al. Zirconia needles synthesized inside hexagonal swollen liquid crystals[J]. Chemistry of Materials, 2004, 16(21):4187-4192.
[24] DING Y, CHEN L, GUO R. Preparation of zinc gluconate nanostructures with different shapes by lamellar liquid crystal template[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2007, 295(1):85-90.
[25] 李宏飞, 蒙延峰, 霍红,等. 压力对高分子液-液相转变行为的影响[J]. 科学通报, 2005, 50(7):613-622. LI H F, MENG Y F, HUO H, et al. Effect of pressure on liquid phase transition behavior of polymer[J]. Chinese Science Bulletin, 2005, 50(7):613-622.
[26] RENATA N, RAFFAELE M. pH-responsive lyotropic liquid crystals for controlled drug delivery[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(9):5296-303.
[27] SPAAR E, WENNERSTROM H. Interlamellar forces and the thermodynamic characterization of lamellar phospholipid systems[J]. Current Opinion in Colloid & Interface Science, 2011, 16(16):561-567.
[28] ISHIZUKA C, ARIMA S, ARAMAKI K. Head group effects on molecular packing in lamellar liquid crystals[J]. Journal of Colloid & Interface Science, 2011, 361(1):148-153.
[1] 韩栋, 张宝林, 苏礼超, 韩贵华, 汪晟. 不同粒径超顺磁性氧化铁纳米粒子的合成及其在交变磁场中的磁热效应[J]. 材料工程, 2019, 47(4): 84-90.
[2] 马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
[3] 梁智鹏, 王一雍, 金辉, 周新宇, 刘香琳. Ni-Co/纳米ZrO2复合材料的电化学行为及摩擦磨损性能[J]. 材料工程, 2018, 46(5): 112-119.
[4] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[5] 王丽丽, 李嘉荣, 唐定中, 刘世忠. SiO2-ZrO2陶瓷型芯与DZ125,DD5和DD6三种铸造高温合金的界面反应[J]. 材料工程, 2016, 44(3): 9-14.
[6] 盛典, 张宝林, 涂志江, 谢松伯, 王茗. MPEG修饰的纳米氧化铁粒子的合成及清洗工艺[J]. 材料工程, 2015, 43(2): 47-52.
[7] 房光强, 沈登雄, 栗付平, 李华, 杨海霞, 刘金刚, 杨士勇. 聚酰亚胺/SiO2纳米复合抗原子氧气凝胶的合成与性能[J]. 材料工程, 2015, 43(12): 17-23.
[8] 齐亚娥, 张永胜, 胡丽天. Al2O3/Al2O3-ZrO2(3Y)层状纳米复合材料的制备与性能优化[J]. 材料工程, 2013, (2): 17-21.
[9] 郭巍, 吴行, 郑振忠, 陈庆昌, 张明. 一步法原位合成Fe2O3/Ag磁性核壳粒子[J]. 材料工程, 2012, 0(9): 35-38.
[10] 王艳丽, 张明旭, 王晓宇. 超声诱导CTAB/SDS溶液中纳米Pd粒子的形貌控制及对甲醛的电催化氧化[J]. 材料工程, 2012, 0(4): 56-61.
[11] 陈进, 张海燕, 刘晓平, 李丽萍. 碳包铜纳米颗粒的制备及其性能研究[J]. 材料工程, 2011, 0(7): 31-33,89.
[12] 庞晋山, 张海燕, 吴其光, 林锦, 徐卓文, 涂文英. 化学处理法制备碳包铜导热纳米流体及其性能表征[J]. 材料工程, 2011, 0(3): 28-31,35.
[13] 刘刚, 张代军, 张晖, 安学锋, 益小苏, 张忠. 纳米粒子改性环氧树脂及其复合材料力学性能研究[J]. 材料工程, 2010, 0(1): 47-53.
[14] 任继文, 彭蓓, 张鸿海, 刘胜. 钇稳定氧化锆纳米粉体烧结工艺的研究[J]. 材料工程, 2009, 0(2): 38-42.
[15] 金顶峰, 王新庆, 金红晓, 侯昭胤, 郑小明, 葛洪良. 硫酸化介孔氧化锆固体超强酸的制备和应用研究[J]. 材料工程, 2008, 0(10): 223-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn