Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 92-97    DOI: 10.11868/j.issn.1001-4381.2016.06.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
ZM5镁合金TIG焊接接头组织与力学性能
秦仁耀1, 孙兵兵1, 肇恒跃2, 郭绍庆1, 唐思熠1, 张学军1
1. 北京航空材料研究院 3D打印研究与工程技术中心, 北京100095;
2. 沈阳飞机工业集团有限公司 驻军代表室, 沈阳 110034
Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy
QIN Ren-yao1, SUN Bing-bing1, ZHAO Heng-yue2, GUO Shao-qing1, TANG Si-yi1, ZHANG Xue-jun1
1. Research and Engineering Center of 3 D Printing, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Military Representative Department, Shenyang Aircraft Industry Co., Ltd., Shenyang 110034, China
全文: PDF(7638 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用TIG焊对ZM5镁合金进行焊接,利用光学显微镜、显微硬度仪和拉伸试验机对ZM5镁合金接头的组织特征和力学性能进行研究。结果表明:ZM5合金TIG焊接接头是由热影响区、部分重熔区和焊缝组成。热影响区组织是由初生α-Mg相基体和主要分布在晶界上的α-Mg+β-Mg17Al12共晶相组成;部分重熔区中共晶相不仅大量析出在晶界上,在晶内也呈现出较均匀的弥散析出,而且其β-Mg17Al12相出现显著长大;焊缝组织则是典型的树枝晶形貌,枝晶为初生α-Mg相,枝晶间是α+β共晶相。组织形貌的差异导致接头各区域有着不同的显微硬度,也使得接头的抗拉强度和塑性都低于母材。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦仁耀
孙兵兵
肇恒跃
郭绍庆
唐思熠
张学军
关键词 镁合金TIG焊显微组织力学性能    
Abstract:The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.
Key wordsmagnesium alloy    TIG weld    microstructure    mechanical property
收稿日期: 2015-06-23      出版日期: 2016-06-13
1:  TG407  
通讯作者: 秦仁耀(1987-),男,工程师,博士,主要从事激光增材制造及氩弧焊技术研究,联系地址:北京市81信箱20分箱(100095),E-mail:qinrenyao@sina.com     E-mail: qinrenyao@sina.com
引用本文:   
秦仁耀, 孙兵兵, 肇恒跃, 郭绍庆, 唐思熠, 张学军. ZM5镁合金TIG焊接接头组织与力学性能[J]. 材料工程, 2016, 44(6): 92-97.
QIN Ren-yao, SUN Bing-bing, ZHAO Heng-yue, GUO Shao-qing, TANG Si-yi, ZHANG Xue-jun. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy. Journal of Materials Engineering, 2016, 44(6): 92-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.014      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/92
[1] MORDIKE B L, EBERT T. Magnesium:properties-applications-potential[J]. Materials Science and Engineering:A, 2001,302:37-45.
[2] 冯吉才,王亚荣,张忠典. 镁合金焊接技术的研究现状及应用[J]. 中国有色金属学报,2005,15(2):165-178. FENG J C, WANG Y R, ZHANG Z D. Status and expectation of research on welding of magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2005,15(2):165-178.
[3] 曾荣昌,柯伟,徐永波. Mg合金的最新发展及应用前景[J]. 金属学报,2001,37(7):673-685. ZENG R C, KE W, XU Y B. Recent development and application of magnesium alloys[J]. Acta Metallurgica Sinica, 2001,37(7):673-685.
[4] 钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J]. 航空工程与维修,2002,(4):41-42. ZHONG H, LIU P Y, ZHOU T T. Application and prospects of magnesium and its alloys in aerospace[J]. Aviation Engineering & Maintenance, 2002,(4):41-42.
[5] 徐锦锋,翟秋亚. AZ91B镁合金TIG焊接头组织与性能[J]. 特种铸造及有色合金,2004,(4):23-25. XU J F, DI Q Y. Microstructure and properties of TIG welding joint for AZ91B Mg alloy[J]. Special Casting & Nonferrous alloys, 2004,(4):23-25.
[6] 刘闯,曹文,张亚龙,等. Al-B-C中间合金对ZM5合金组织和性能的影响[J]. 铸造,2012,61(10):1130-1134. LIU C, CAO W, ZHANG Y L, et al. Effect of Al-B-C master alloy on microstructures and properties of ZM5 alloy[J]. Foundry, 2012,61(10):1130-1134.
[7] 陈乐平,刘刚强,艾云龙. 稀土元素钇对ZM5合金腐蚀性能影响的研究[J]. 铸造工程,2007,(1):37-39. CHEN L P, LIU G Q, AI Y L. Effect of rare earth yttrium on erosive properties of ZM5 alloy[J]. Foundry Engineering, 2007,(1):37-39.
[8] 张晋涛,陈乐平,尹健,等. 微量Er对ZM5镁合金微观组织及腐蚀性能的影响[J]. 铸造技术,2012,33(2):160-163. ZHANG J T, CHEN L P, YIN J, et al. Influence of Er addition on microstructure and corrosion resistance of ZM5 magnesium alloy[J]. Foundry Technology, 2012,33(2):160-163.
[9] SCHRAM A, KETTLER C, MAZAC K, et al. Friction welding of magnesium alloys[J]. Schweissen und Schneiden(Germany), 2000, 52(6):349-350.
[10] OGAWA K, YAMAGUCHI H, OCHI H, et al. Friction welding of AZ31 magnesium alloy[J]. Welding International, 2003, 17(11):879-885.
[11] CAO X, JAHAZI M, IMMARIGEON J P, et al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology, 2006, 171(2):188-204.
[12] QUAN Y J, CHEN Z H, GONG X S, et al. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31[J]. Materials Characterization, 2008, 59(10):1491-1497.
[13] ZHU J, LI L, LIU Z. CO2 and diode laser welding of AZ31 magnesium alloy[J]. Applied Surface Science, 2005, 247(1):300-306.
[14] DRAUGELATES U, BOUAIFI B, BARTZSCH J, et al. Welding of magnesium alloys by means of non-vacuum electron-beam welding[J]. Schweissen und Schneiden(Germany), 2000, 52(4):198-203.
[15] SU S F, LIN H K, HUANG J C, et al. Electron-beam welding behavior in Mg-Al-based alloys[J]. Metallurgical and Materials Transactions A, 2002,33(5):1461-1473.
[16] MUNITZ A, COTLER C, SHAHAM H, et al. Electron beam welding of magnesium AZ91D plates[J]. Welding Journal, 2000,79(7):202-208.
[17] RETHMEIER M, KLEINPETER B, WOHLFAHRT. MIG welding of magnesium alloys metallographic aspects[J]. Welding in the World, 2004, 48(4):28-33.
[18] ZHANG Z, KONG X. Study on DC double pulse metal inert gas (MIG) welding of magnesium alloy[J]. Materials and Manufacturing Processes, 2012, 27(4):462-466.
[19] BAKER H. ASM Handbook:Alloy Phase Diagrams[M]. 3rd ed. United States of America:ASM International, 1992.
[20] ZHU T, CHEN Z W, GAO W. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy[J]. Materials Characterization, 2008, 59(11):1550-1558.
[21] BRASZCZYNSKA-MALIK K N, MROZ M. Gas-tungsten arc welding of AZ91 magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509(41):9951-9958.
[22] 初雅杰,李晓泉,吴申庆,等. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程,2014,(6):35-39. CHU Y J, LI X Q, WU S Q, et al. Influence of hot compression deformation on microstructures and mechanical properties of welded joints for AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2014,(6):35-39.
[23] 游国强,王向杰,齐冬亮,等. 线能量对挤压AZ91D镁合金GTAW焊接接头组织与性能的影响[J]. 材料工程,2013,(10):57-63. YOU G Q, WANG X J, QI D L, et al. Effect of line energy on the microstructure and properties of GTAW welded hot extruded AZ91D magnesium alloy joints[J]. Journal of Materials Engineering, 2013,(10):57-63.
[24] MUNITZ A, COTLER C, STERN A, et al. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J]. Materials Science and Engineering:A, 2001, 302(1):68-73.
[25] 陈琼. AZ31镁合金CO2激光填充焊工艺及接头组织性能研究[D]. 长沙:湖南大学,2010.32-36.
[26] 王红英.铸造镁合金AM60的TIG焊研究[D]. 镇江:江苏科技大学,2007.28-38.
[27] 郭强.AZ91D镁合金TIG焊焊接接头组织与性能研究[D].重庆:重庆大学,2011.16-24.
[28] 陈梓山.镁铝合金β-Mg17Al12相析出形态及力学性能的研究[D].西安:西安理工大学,2009.35-45.
[1] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[2] 曹宇, 刘荣军, 曹英斌, 龙宪海, 严春雷, 张长瑞. 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程, 2016, 44(7): 19-25.
[3] 王丙兴, 董福志, 王昭东, 王国栋. 超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究[J]. 材料工程, 2016, 44(7): 26-31.
[4] 庞启航, 唐荻, 赵征志, 武会宾, 李烁. 低活化钢析出相热力学研究[J]. 材料工程, 2016, 44(7): 37-42.
[5] 李国栋, 栗卓新, 古金茂, 齐勇田. 超声作用下Mg-Zn-Al钎料的润湿与铺展[J]. 材料工程, 2016, 44(7): 43-48.
[6] 潘健, 肖长发, 赵健, 黄庆林, 任倩. 单轴取向乙烯-三氟氯乙烯共聚物纤维结晶结构与性能表征[J]. 材料工程, 2016, 44(7): 73-77.
[7] 黄正华, 刘汪涵博, 戚文军, 徐静. 第三组元对Mg-Sn合金铸态组织与力学性能的影响[J]. 材料工程, 2016, 44(6): 56-62.
[8] 付超, 冯微, 童锦艳, 郑运荣, 冯强. GH4033涡轮叶片服役1600h后的显微组织及力学性能评价[J]. 材料工程, 2016, 44(6): 84-91.
[9] 张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程, 2016, 44(5): 112-119.
[10] 宋广胜, 陈强强, 徐勇, 李娟, 张士宏. AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J]. 材料工程, 2016, 44(4): 1-8.
[11] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[12] 张晓云, 曹东, 陆峰, 刘建华. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4): 82-88.
[13] 张爱军, 韩杰胜, 马文林, 孟军虎. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3): 1-8.
[14] 赵吉宾, 王志国, 赵宇辉, 龙雨, 王福雨, 来佑彬. 真空热处理对激光近净成形In625和C-276合金性能的影响[J]. 材料工程, 2016, 44(3): 28-34.
[15] 张敏, 刘明志, 张明, 李继红. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J]. 材料工程, 2016, 44(3): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn