Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 117-122    DOI: 10.11868/j.issn.1001-4381.2016.06.018
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
CNTs-Al2O3多孔陶瓷复合材料的制备与性能
彭美华, 程西云, 周彪, 严茂伟, 张建锋
汕头大学 工学院, 广东 汕头 515063
Preparation and Properties of CNTs-Al2O3 Porous Ceramic Composites
PENG Mei-hua, CHENG Xi-yun, ZHOU Biao, YAN Mao-wei, ZHANG Jian-feng
College of Engineering, Shantou University, Shantou 515063, Guangdong, China
全文: PDF(11252 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用冰模板法制备一种具有高孔隙率的碳纳米管强化氧化铝(CNTs-Al2O3)多孔陶瓷复合材料。采用SEM,XRD及Raman对样品进行表征,研究碳纳米管(CNTs)含量对复合材料微观形貌、性能的影响。结果表明:随着CNTs含量的增大,复合材料的体积密度、孔隙率和抗压强度均发生改变;添加适量的CNTs能促进陶瓷孔壁烧结致密度,提高材料的抗压强度;但加入过量CNTs会导致CNTs团聚,嵌于陶瓷内壁形成微孔,反而降低了材料致密度与抗压强度;当CNTs含量达2.0%(质量分数)时,多孔陶瓷的抗压强度达到最大值4.52MPa,相对纯Al2O3多孔陶瓷提高了66%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭美华
程西云
周彪
严茂伟
张建锋
关键词 冰模板法多孔陶瓷碳纳米管氧化铝    
Abstract:Carbon nanotubes-alumina (CNTs-Al2O3) porous composite with high porosity and excellent compressive strength was prepared by ice-template technique. Effects of different CNT concentrations on microstructure and properties of the composite were investigated intensively by SEM, XRD and Raman. The results show that the bulk density, porosity and compressive strength of the composite will change with the increase of CNT content. Adding appropriate amount of CNTs will be able to increase the density of ceramic lamellae and enhance the compressive strength of the composite. However, excessive CNTs adversely will decrease the density and compressive strength of material due to the micro pores caused by CNT agglomerations anchored on the internal wall of porous ceramic. The composite reaches a maximum compressive strength of 4.52MPa when additive amount of CNTs at 2.0%(mass fraction), which increases by 66% comparing to pure Al2O3 porous ceramic.
Key wordsice-template    porous ceramic    CNTs    Al2O3
收稿日期: 2014-09-09      出版日期: 2016-06-13
中图分类号:  TB383  
  TD875+.2  
通讯作者: 程西云(1966-),男,教授,博士后,研究方向:材料与工程、梯度功能材料,联系地址:广东省汕头市金平区大学路243号汕头大学工学院(515063),E-mail:xycheng@stu.edu.cn     E-mail: xycheng@stu.edu.cn
引用本文:   
彭美华, 程西云, 周彪, 严茂伟, 张建锋. CNTs-Al2O3多孔陶瓷复合材料的制备与性能[J]. 材料工程, 2016, 44(6): 117-122.
PENG Mei-hua, CHENG Xi-yun, ZHOU Biao, YAN Mao-wei, ZHANG Jian-feng. Preparation and Properties of CNTs-Al2O3 Porous Ceramic Composites. Journal of Materials Engineering, 2016, 44(6): 117-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.018      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/117
[1] LI X, WU P, ZHU D. Properties of porous alumina ceramics prepared by technique combining cold-drying and sintering[J]. Int J Refract Met H, 2013, 41:437-441.
[2] DEVILLE S. Freeze-casting of porous ceramics:a review of current achievements and issues[J]. Adv Eng Mater, 2008, 10(3):155-169.
[3] LI D, LI M. Preparation of porous alumina ceramic with ultra-high porosity and long straight pores by freeze casting[J]. J Porous Mater, 2011, 19(3):345-349.
[4] HU L, WANG C A, HUANG Y, et al. Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectional aligned channels using different freezing temperatures[J]. J Eur Ceram Soc, 2010, 30(16):3389-3396.
[5] HUNGER P M, DONIUS A E, WEGST U G. Structure-property processing correlations in freeze-cast composite scaffolds[J]. Acta Biomater, 2013, 9(5):6338-6348.
[6] SUMLO IIJIMA. Helical microtubes of graphitic carbon[J]. Nature, 1991, 354(7):56-58.
[7] 孙莉莉,钟艳莉. 碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J]. 材料工程,2013,(4):17-22. SUN L L,ZHONG Y L.Crystallization and dielectric properties of carbon nanofiber/high-density polyethylene composites[J]. Journal of Materials Engineering,2013,(4):17-22.
[8] NYAN H T, MENG K Y, JIA H. Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement[J]. Carbon, 2004, 42(12-13):2774-2777.
[9] WANG J, KOU H, LIU X, et al. Reinforcement of mullite matrix with multi-walled carbon nanotubes[J]. Ceram Int, 2007, 33(5):719-722.
[10] ZHANG J, ZOU H L, QING Q, et a1. Effect of chemical oxidation on the structure of single-walled carbon nanotubes[J]. J Phys Chem B, 2003, 107(161):3712-3718.
[11] ZAMAN A C, USTUNDAG C B, KAYA F, et al. OH and COOH functionalized single walled carbon nanotubes-reinforced alumina ceramic nanocomposites[J]. Ceram Int, 2012, 38(2):1287-1293.
[12] ESTILI M, KAWASAKI A, SAKAMOTO H, et al. The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement[J]. Acta Mater, 2008, 56(15):4070-4079.
[13] LAHIRI D, GHOSH S, AGARWAL A. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application:a review[J]. Mater Sci Eng C, 2012, 32(7):1727-1758.
[14] WALTER C, BARG S, NI N, et al. A novel approach for the fabrication of carbon nanofibre/ceramic porous structures[J]. J Eur Ceram Soc, 2013, 33(13-14):2365-2374.
[15] ZHANG S C, FAHRENHOLTZ W G, HILMAS G E, et al. Pressureless sintering of carbon nanotube-Al2O3composites[J]. J Eur Ceram Soc, 2010, 30(6):1373-1380.
[16] AHMAD I, CAO H, CHEN H, et al. Carbon nanotube toughened aluminiumoxide nanocomposite[J]. J Eur Ceram Soc, 2010, 30(4):865-873.
[17] MAZAHERI M, MARI D, SCHALLER R, et al. Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties[J]. J Eur Ceram Soc, 2011, 31(14):2691-2698.
[18] HADJIEV V G, WARREN G L, SUN L, et al. Raman microscopy of residual strains in carbon nanotube/epoxy composites[J]. Carbon, 2010, 48(6):1750-1756.
[19] HADJIEV V G, ILIEV M N, AREPALLI S, et al.Raman scattering test of single-wall carbon nanotube composites[J].ApplPhys Lett, 2001, 78(21):3193-3195.
[20] HADJIEV V G, LAGOUDAS D C, OH E S, et al. Buckling instabilities of octadecy lamine functionalized carbon nanotubes embedded in epoxy[J]. Compos Sci Technol, 2006, 66(1):128-136.
[21] CHA S I, KIM K T, LEE K H, et al. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process[J]. Scripta Mater, 2005, 53(7):793-797.
[22] HADJIEV V G, LAGOUDAS D C, OH E S, et al. Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy[J]. Compos Sci Technol, 2006, 66(1):128-136.
[23] PEJOVNIK S, KOLAR D, HUPPMANN W J, et al. Sintering of alumina in presence of liquid phase[J]. Sci Sintering, 1978, 10(2):87-95.
[24] MITTAL V. Polymer nanotube nanocomposites:synthesis, properties, and applications[R]. New Jersy:Wiley Publishers, 2010.
[25] AHMAD I, ISLAM M, ALMAJID A A, et al. Investigation of yttria-doped alumina nanocomposites reinforced by multi-walled carbon nanotubes[J]. Ceram Int, 2014, 40(7):9327-9335.
[1] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[2] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[3] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[4] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[5] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[6] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[7] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[8] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[9] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[10] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[11] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[12] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[13] 余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
[14] 鲁浩, 李楠, 王海波, 廖帮全, 姜亚明, 荆妙蕾, 徐志伟, 陈莉, 张兴祥. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31.
[15] 马林, 文丹妮. 高强隔热刚玉-镁铝尖晶石-莫来石多孔陶瓷材料的制备[J]. 材料工程, 2019, 47(10): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn