Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 1-6    DOI: 10.11868/j.issn.1001-4381.2016.07.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究
张鉴炜, 石刚, 江大志
国防科学技术大学 材料科学与工程系, 长沙 410073
Pressurized Resin Infiltration Technology for Fabricating Buckypaper/Epoxy Composites
ZHANG Jian-wei, SHI Gang, JIANG Da-zhi
Department of Materials Science and Engineering, National University of Defense Technology, Changsha 410073, China
全文: PDF(4703 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 Buckypaper/聚合物复合材料中碳纳米管团聚较少,且含量较高,使得碳纳米管的优异性能得以更加充分的发挥,显著提升了复合材料的各项性能。由于Buckypaper结构紧密,传统的滤渗浸渍方法不能满足制备高质量Buckypaper/环氧复合材料的要求。为提高环氧树脂在Buckypaper中的浸渍效率和质量,开发了Buckypaper的“加压滤渗”浸渍工艺,将环氧树脂溶液通过Buckypaper进行加压过滤,实现对Buckypaper的有效、均匀和完全浸渍。Buckypaper/环氧复合材料微观形貌表征结果表明,“加压滤渗”浸渍工艺制备的Buckypaper/环氧复合材料表面质量良好,且环氧树脂在Buckypaper内部充分浸渍,且分布均匀。与溶液浸渍法制备的Buckypaper/环氧复合材料对比,“加压滤渗”浸渍工艺制备的复合材料具有更加优异的力学性能,更加充分地发挥了Buckypaper的增强效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鉴炜
石刚
江大志
关键词 Buckypaper聚合物复合材料制备工艺微观结构力学性能    
Abstract:Buckypaper/polymer composites can take more advantages of the superior properties of carbon nanotubes (CNTs) and possess enhanced properties than traditional CNT/polymer composites,for the aggregation of CNTs is low and the CNT content is high. However,due to the dense structures of Buckypaper,the traditional infiltration technique cannot meet the requirements for fabricating high quality Buckypaper/polymer composites. A pressurized infiltration technique was developed to enhance the infiltration efficiency and quality. The epoxy solution was pressurized infiltrated through the Buckypaper,resulting in a well infused Buckypaper. The micro-structure characterization indicates that the surface and fracture structures of the Buckypaper/polymer composites are even and uniform. What's more,Buckypaper/epoxy composites fabricated by the pressurized infiltration technique possess much higher mechanical properties than that fabricated by the solution soaking technique.
Key wordsBuckypaper    polymer composite    fabrication technique    micro-structure    mechanical property
收稿日期: 2014-09-17      出版日期: 2016-07-19
中图分类号:  TB332  
通讯作者: 江大志(1963-),男,教授,博士生导师,研究方向:纳米聚合物基复合材料,联系地址:湖南省长沙市开福区德雅路109号国防科学技术大学材料科学与工程系(410073),E-mail:jiangdz@nudt.edu.cn     E-mail: jiangdz@nudt.edu.cn
引用本文:   
张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
ZHANG Jian-wei, SHI Gang, JIANG Da-zhi. Pressurized Resin Infiltration Technology for Fabricating Buckypaper/Epoxy Composites. Journal of Materials Engineering, 2016, 44(7): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/1
[1] YU M F,LOURIE O,DYER M J,et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science,2000,287(5453):637-640.
[2] YU M F,FILES B S,AREPALLI S,et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J]. Physical Review Letters,2000,84(24):5552-5555.
[3] THESS A,LEE R,NIKOLAEV P,et al. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996,273(5274):483-487.
[4] KIM P,SHI L,MAJUMDAR A,et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters,2001,87(21):215502.
[5] HONE J,WHITNEY M,PISKOTI C,et al. Thermal conductivity of single-walled carbon nanotubes[J]. Physical Review B,1999,59(4):2514-2516.
[6] COLEMAN J N,KHAN U,GUN'KO Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials,2005,18:689-706.
[7] BAUHOFER W,KOVACS J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science and Technology,2009,69(10):1486-1498.
[8] HAN Z D,FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J]. Progress in Polymer Science, 2011,36:914-944.
[9] KNIGHT C C,IP F,ZENG C,et al. A highly efficient fire-retardant nanomaterial based on carbon nanotubes and magnesium hydroxide[J]. Fiber and Materials,2013,37:91-99.
[10] THOSTENSON E T,LI C,CHOU T W. Nanocomposites in context[J]. Composites Science and Technology,2005,65(3):491-516.
[11] ENDO M, MURAMTSU H, HAYASHI T, et al. Nanotechnology:"Buckypaper" from coaxial nanotube[J]. Nature, 2005,433(7025):476.
[12] WANG Z,LIANG Z Y,WANG B,et al. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites[J]. Composites Part A:Applied Science and Manufacturing, 2004,35(10):1225-1232.
[13] LOPES P E,VAN HATTUM F,PEREIRA C,et al. High CNT content composites with CNT Buckypaper and epoxy resin matrix:impregnation behaviour composite production and characterization[J]. Composite Structures,2010,92(6):1291-1298.
[14] HONE J,LLAGUNO M C,BIERCUK M J,et al. Thermal properties of carbon nanotubes and nanotube-based materials[J]. Applied Physics A,2002,74:339-343.
[15] ZHANG J W,JIANG D Z. Influence of geometries of multi-walled carbon nanotubes on the pore structures of Buckypaper[J]. Composites Part A:Applied Science and Manufacturing,2011,43:469-474.
[16] COLEMAN J N,BLAU W J,DALTON A B,et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives[J]. Applied Physics Letters,2003,82(11):1682-1684.
[17] FRIZZELL C,COUTINHO D,BALKUS JR K,et al. Reinforcement of macroscopic carbon nanotube structures by polymer intercalation:the role of polymer molecular weight and chain conformation[J]. Physical Review B,2005,72(24):245420.
[18] TALLURY S S,PASQUINELLI M A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes[J]. Journal of Physical Chemistry B,2010,114(12):4122-4129.
[19] ZHANG J W,JIANG D Z. Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites[J]. Composites Science and Technology,2011,71(4):466-470.
[20] ZHANG J W,JIANG D Z,PENG H X. A pressurized filtration technique for fabricating carbon nanotube buckypaper:Structure,mechanical and conductive properties[J]. Microporous and Mesoporous Materials,2014,184:127-133.
[21] ZHANG J W,JIANG D Z,PENG H,et al. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in-situ cross-linking[J]. Carbon,2013,63:125-132.
[22] PARNAS R S,HOWWARD J G,LUCE T L,et al. Permeability characterization part I:a proposed standard reference fabric for permeability[J]. Polymer Composites,1995,16(6):429-445.
[23] ZHANG J W,JIANG D Z,PENG H X. Two-stage mechanical percolation in the epoxy resin intercalated buckypaper with high mechanical performance[J]. RSC Advances,2013,3:15290-15297.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn