Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 19-25    DOI: 10.11868/j.issn.1001-4381.2016.07.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响
曹宇, 刘荣军, 曹英斌, 龙宪海, 严春雷, 张长瑞
国防科学技术大学 航天科学与工程学院, 长沙 410073
Effects of Preform Density on Structure and Property of C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration
CAO Yu, LIU Rong-jun, CAO Ying-bin, LONG Xian-hai, YAN Chun-lei, ZHANG Chang-rui
College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073, China
全文: PDF(19551 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 三维针刺碳毡经化学气相渗透(Chemical Vapor Infiltration, CVI)增密制备C/C素坯,通过气相渗硅(Gaseous Silicon Infiltration, GSI)制备C/C-SiC复合材料。研究素坯密度与CVI C层厚度及素坯孔隙率的变化规律,并分析素坯密度对C/C-SiC复合材料力学性能、热学性能的影响。结果表明:随着素坯密度增大,CVI C层变厚,孔隙率减小;C/C-SiC复合材料中残C量随之增大,残余Si量随之减小,SiC先保持较高含量(体积分数约40%),随后迅速降低,C/C-SiC复合材料密度逐渐减小,力学性能先增大后减小,而热导率及热膨胀系数降低至平稳。当素坯密度为1.085g/cm3时,复合材料力学性能最好,弯曲强度可达308.31MPa,断裂韧度为11.36MPa·m1/2。研究发现:素坯孔隙率较大时,渗硅通道足够,残余硅多,且CVI C层较薄,纤维硅蚀严重,C/C-SiC复合材料力学性能低;素坯孔隙率较小时,渗硅通道很快阻塞,Si和SiC含量少,而闭孔大且多,C/C-SiC复合材料力学性能也不高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹宇
刘荣军
曹英斌
龙宪海
严春雷
张长瑞
关键词 C/C素坯气相渗硅C/C-SiCCVI C力学性能    
Abstract:The 3-D needled C/C preforms with different densities deposited by chemical vapor infiltration (CVI) method were used to fabricate C/C-SiC composites by gaseous silicon infiltration (GSI). The porosity and CVI C thickness of the preforms were studied, and the effects of preform density on the mechanical and thermal properties of C/C-SiC composites were analyzed. The results show that with the increase of preform density, the preform porosity decreases and the CVI C thickness increases from several hundred nanometers to several microns. For the C/C-SiC composites, as the preform density increases, the residual C content increases while the density and residual Si content decreases. The SiC content first keeps at a high level of about 40% (volume fraction), which then quickly reduces. Meanwhile, the mechanical properties increase to the highest values when the preform density is 1.085g/cm3, with the flexure strength up to 308.31MP and fracture toughness up to 11.36MPa·m1/2, which then decrease as the preform density further increases. The thermal conductivity and CTE of the composites, however, decrease with the increase of preform density. It is found that when the preform porosity is too high, sufficient infiltration channels lead to more residual Si, and thinner CVI C thickness results in the severe corrosion of the reinforcing fibers by Si and lower mechanical properties. When the preform porosity is relatively low, the contents of Si and SiC quickly reduce since the infiltration channels are rapidly blocked, resulting in the formation of large closed pores and not high mechanical properties.
Key wordsC/C preform    GSI    C/C-SiC composite    CVI C    mechanical property
收稿日期: 2014-05-27      出版日期: 2016-07-19
1:  TB332  
通讯作者: 刘荣军(1978-),男,博士,副研究员,主要从事陶瓷基复合材料研究,联系地址:湖南省长沙市开福区德雅路109号国防科技大学航天科学与工程学院新型陶瓷纤维及其复合材料重点实验室(410073),E-mail:rongjunliu@nudt.edu.cn     E-mail: rongjunliu@nudt.edu.cn
引用本文:   
曹宇, 刘荣军, 曹英斌, 龙宪海, 严春雷, 张长瑞. 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程, 2016, 44(7): 19-25.
CAO Yu, LIU Rong-jun, CAO Ying-bin, LONG Xian-hai, YAN Chun-lei, ZHANG Chang-rui. Effects of Preform Density on Structure and Property of C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration. Journal of Materials Engineering, 2016, 44(7): 19-25.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.004      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/19
[1] KRENKEL W, BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering:A, 2005, 412(1-2):177-181.
[2] NASLAIN R, SiC-matrix composites:nonbrittle ceramics for thermo-structural application[J]. International Journal of Applied Ceramic Technology, 2005,2(2):75-84.
[3] 张德坷, 曹英斌, 刘荣军, 等. C/SiC复合材料空间光机结构件的研究进展与展望[J]. 材料导报, 2012,26(7):7-11. ZHANG D K, CAO Y B, LIU R J, et al. Progress and prospect of C/SiC composites used in space opto-mechanical structures[J]. Materials Review, 2012,26(7):7-11.
[4] 何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J]. 硅酸盐通报,2009, 28(6):1198-1201. HE B L, SUN J. Progress and application of carbon fibers reinforced silicon carbide ceramic matrix composites[J]. Bulletin of the Chinese Ceramic Society,2009, 28(6):1198-1201.
[5] 谢东, 杨西荣, 赵西成, 等. 室温ECAP变形对T250马氏体时效钢组织和性能的影响[J]. 航空材料学报, 2014, 34(6):28-32. XIE D, YANG X R, ZHAO X C, et al. Effect of ECAP at room temperature on microstructure and properties of T250 maraging steel[J]. Journal of Aeronautical Materials, 2014, 34(6):28-32.
[6] FU Q G, ZHAO F L, LI H J, et al. A multi-interlayer LMAS joint of C/C-SiC composites and LAS glass ceramics[J]. Journal of Materials Science & Technology, 2015,31:467-472.
[7] 张波, 李瑞珍, 解惠贞. 熔融渗硅法制备C/C-SiC复合材料工艺参数研究[J]. 材料导报, 2015,29(增刊1):389-392. ZHANG B, LI R Z, XIE H Z. Research of the parameter of liquid silicon in filtration process for C/C-SiC composites[J]. Materials Review, 2015,29(Suppl 1):389-392.
[8] 安娜, 李崇俊, 嵇阿琳. PIP法制备C/C-SiC复合材料研究进展[J]. 炭素, 2015,(1):15-20. AN N, LI C J, JI A L. Recent development of C/C-SiC composites by precursor infiltration and pyrolysis[J]. Carbon, 2015,(1):15-20.
[9] 高晓菊, 成来飞, 燕东明, 等. 制备工艺对三维针刺C/SiC层向动态压缩性能的影响[J]. 固体火箭技术, 2016, 39(1):95-99. GAO X J, CHENG L F, YAN D M, et al. Effect of preparation process on layer-directional dynamic compressive properties of 3N C/SiC composites[J]. Journal of Solid Rocket Technology, 2016, 39(1):95-99.
[10] 李专, 肖鹏, 熊翔. 连续纤维增强陶瓷基复合材料的研究进展[J]. 粉末冶金材料科学与工程, 2007, 12(1):13-19. LI Z, XIAO P, XIONG X. Progress in research work of continuous fiber reinforced ceramic matrix composite[J]. Materials Science and Engineering of Powder Metallurgy, 2007, 12(1):13-19.
[11] WILLAM B H. Making ceramic composites by melt infiltration[J]. American Ceramic Society Bulletin, 1994,73(4):56-62.
[12] SHONU K, TANI E, KISHI K, et al. SiC-intermetallics composites fabricated by melt infiltration[J]. Key Engin Mater, 1999,159-160:325-330.
[13] 周清, 董绍明, 丁玉生, 等. 界面涂层对气相渗硅Cf/SiC复合材料力学性能的影响[J]. 无机材料学报,2007, 22(6):1142-1146. ZHOU Q, DONG S M, DING Y S, et al. Effect of interphase on mechanical properties of Cf/SiC composites fabricated by vapor silicon infiltration[J]. Journal of Inorganic Materials,2007, 22(6):1142-1146.
[14] ZHOU Q, DONG S M, DING Y S, et al. Three-dimensional carbon fiber-reinforced silicon carbide matrix composites by vapor silicon infiltration[J]. Ceramics International, 2009, 35:2161-2169.
[15] WANG H L, ZHOU X G, YU J S, et al. Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration[J]. Materials Letters, 2010, 64:1691-1693.
[16] WANG H L, ZHOU X G, YU J S, et al. Microstructure, mechanical properties and reaction mechanism of KD-1 SiCf/SiC composites fabricated by chemical vapor infiltration and vapor silicon infiltration[J]. Materials Science and Engineering:A, 2011,528:2441-2445.
[17] QIAN J M, JIN Z H,WANG X W. Porous SiC ceramics fabricated by reactive infiltration of gaseous silicon into charcoal[J]. Ceramics International, 2004, 30:947-951.
[18] LI Q G, DONG S M, WANG Z, et al. Fabrication and properties of 3-D Cf/ZrC-SiC composites by the vapor silicon infiltration process[J]. Ceramics International, 2013, 39:4723-4727.
[19] OKADA Y, TOKUMARU Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500K[J]. J Appl Phys, 1984, 56(2):314-320.
[20] ZOHULTE-FISCHEDICK J, ZERN A, MAYER J, et al. The morphology of silicon carbide in C/C-SiC composites[J]. Mat Sci Eng, 2002, 332(1-2):146-152.
[1] 徐学宏, 王小群, 闫超, 王旭. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120.
[2] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[3] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[4] 王丙兴, 董福志, 王昭东, 王国栋. 超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究[J]. 材料工程, 2016, 44(7): 26-31.
[5] 潘健, 肖长发, 赵健, 黄庆林, 任倩. 单轴取向乙烯-三氟氯乙烯共聚物纤维结晶结构与性能表征[J]. 材料工程, 2016, 44(7): 73-77.
[6] 秦仁耀, 孙兵兵, 肇恒跃, 郭绍庆, 唐思熠, 张学军. ZM5镁合金TIG焊接接头组织与力学性能[J]. 材料工程, 2016, 44(6): 92-97.
[7] 黄正华, 刘汪涵博, 戚文军, 徐静. 第三组元对Mg-Sn合金铸态组织与力学性能的影响[J]. 材料工程, 2016, 44(6): 56-62.
[8] 张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程, 2016, 44(5): 112-119.
[9] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[10] 张晓云, 曹东, 陆峰, 刘建华. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4): 82-88.
[11] 张爱军, 韩杰胜, 马文林, 孟军虎. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3): 1-8.
[12] 赵吉宾, 王志国, 赵宇辉, 龙雨, 王福雨, 来佑彬. 真空热处理对激光近净成形In625和C-276合金性能的影响[J]. 材料工程, 2016, 44(3): 28-34.
[13] 张敏, 刘明志, 张明, 李继红. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J]. 材料工程, 2016, 44(3): 40-45.
[14] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[15] 刘文辉, 何圳涛, 唐昌平, 陈宇强. 变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程, 2016, 44(1): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn