Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 26-31    DOI: 10.11868/j.issn.1001-4381.2016.07.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究
王丙兴1, 董福志1,2, 王昭东1, 王国栋1
1. 东北大学 轧制技术及连轧自动化国家重点实验室, 沈阳 110819;
2. 抚顺新钢铁有限责任公司, 辽宁 抚顺 113001
Microstructure and Property of Mn-Nb-B Low Carbon Bainite High Strength Steel Under Ultra-fast Cooling
WANG Bing-xing1, DONG Fu-zhi1,2, WANG Zhao-dong1, WANG Guo-dong1
1. The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
2. Fushun New Steel Corporation Ltd., Fushun 113001, Liaoning, China
全文: PDF(11216 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Mn-Nb-B减量化成分设计的低碳贝氏体高强钢为研究对象,通过热模拟实验研究实验钢热变形行为和相变行为。结合中厚板生产线特点制定控制轧制与超快速冷却相结合生产工艺路线,充分利用超快速冷却条件下的细晶强化、析出强化等综合强化机制,实现综合力学性能优良的低成本高强工程机械用钢的试制和生产。产品屈服强度和抗拉强度分别达到678MPa和756MPa,伸长率A50为33%,-20℃低温冲击达到261J。产品显微组织由粒状贝氏体、针状铁素体和板条贝氏体组成,基体组织内弥散分布着细小的点状、粒状M/A岛和均匀细小的(Nb,Ti)(C,N)析出粒子以及大量位错组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丙兴
董福志
王昭东
王国栋
关键词 控制轧制和控制冷却超快速冷却低碳贝氏体组织力学性能    
Abstract:Using the Mn-Nb-B low carbon bainite high strength steel with the reducing production technology as the research target, the deformation behavior and phase transformation behavior were studied by the thermal simulation testing machine. Combining with the characteristics of the medium and heavy plate production line, the controlled rolling and controlled cooling technology based on ultra-fast cooling were designed to produce low cost high strength construction machinery steel with superior comprehensive mechanical properties. The strengthening mechanisms such as grain refinement strengthening, precipitation strengthening are effective to produce the Mn-Nb-B low carbon bainite high strength steel. The yield strength and tensile strength of the product reach to 678MPa and 756 MPa respectively, the elongation A50 is 33% and the impact energy at -20℃ is 261J. The microstructure of the steel is composed of granular bainite, acicular ferrite and lath bainite. A large number of fine, point, granular M/A constituents and dislocation structures dispersively distributed inside the matrix, and also tiny and dispersed (Nb,Ti) (C,N) precipitates are observed by transmission electron microscopy.
Key wordsTMCP    ultra-fast cooling    low carbon bainite    microstructure    mechanical property
收稿日期: 2014-11-06      出版日期: 2016-07-19
中图分类号:  TG335.3  
通讯作者: 王丙兴(1979-),男,副教授,博士,主要从事热轧板带材TMCP工艺理论和技术研究,联系地址:辽宁省沈阳市和平区文化路3巷11号东北大学轧制技术及连轧自动化国家重点实验室105信箱(110819),E-mail:wangbx@ral.neu.edu.cn     E-mail: wangbx@ral.neu.edu.cn
引用本文:   
王丙兴, 董福志, 王昭东, 王国栋. 超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究[J]. 材料工程, 2016, 44(7): 26-31.
WANG Bing-xing, DONG Fu-zhi, WANG Zhao-dong, WANG Guo-dong. Microstructure and Property of Mn-Nb-B Low Carbon Bainite High Strength Steel Under Ultra-fast Cooling. Journal of Materials Engineering, 2016, 44(7): 26-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.005      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/26
[1] OUCHI C. Development of steel plates by intensive use of TMCP and direct quenching processes[J]. ISIJ International, 2001, 41(6):542-553.
[2] RODRIGUES P C M, PERELOMA E V, SANTOS D B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering:A, 2000, 283(1):136-143.
[3] 王国栋. 新一代控制轧制和控制冷却技术与创新的热轧过程[J]. 东北大学学报(自然科学版),2009, 30(7):913-922. WANG G D. A new generation of controlled rolling and controlled cooling technology and innovative hot rolling process[J]. Journal of Northeastern University (Natural Science), 2009, 30(7):913-922.
[4] 周晓光,王猛,刘振宇,等.超快冷对X70管线钢组织和性能的影响[J].材料热处理学报,2013,34(9):80-84. ZHOU X G, WANG M, LIU Z Y, et el. Effect of ultra-fast cooling on microstructure and mechanical properties of X70 pipeline steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(9):80-84.
[5] 周成,叶其斌,严玲.超快冷工艺对高强船板组织与性能的影响[J].材料热处理学报,2014,35(7):161-166. ZHOU C, YE Q B, YAN L. Effect of ultra-fast cooling process on microstructure and properties of high strength ship plate[J]. Transactions of Materials and Heat Treatment, 2014, 35(7):161-166.
[6] 刘振宇,唐帅,周晓光,等.新一代TMCP工艺下热轧钢材显微组织的基本原理[J].中国冶金,2013,23(4):10-16. LIU Z Y, TANG S, ZHOU X G, et al. Basic principle of hot rolled steel microstructure using new generation TMCP process[J]. China Metallurgical, 2013, 23(4):10-16.
[7] 周晓光,王猛,刘振宇,等.超快冷条件下含Nb钢铁素体相变区析出及模型研究[J].材料工程,2014,(9):1-7. ZHOU X G, WANG M, LIU Z Y, et al. Research of ferritic phase transformation zone precipitation and model under the condition of ultra-fast cooling[J]. Journal of Materials Engineering, 2014, (9):1-7.
[8] TAKAKI S, FUJIOKA M, AIHARA S, et al. Effect of copper on tensile properties and grain-refinement of steel and its relation to precipitation behavior[J]. Materials Transactions, 2004, 45(7):2239-2244.
[9] WANG X M, SHANG C J, YANG S W, et al. Optimization of RPC technique for refining the intermediate transformation microstructure[J]. Journal of University of Science and Technology Beijing, 2002, 9(3):193-196.
[10] WANG X M, HE X L, YANG S W, et al. Refining of intermediate transformation microstructure by relaxation processing[J]. ISIJ International, 2002, 42(12):1553-1559.
[11] JUN H J, KANG J S, SEO D H, et al. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels[J]. Materials Science and Engineering:A, 2006, 422(1-2):157-162.
[12] HARA T, ASAHI H, UEMORI R, et al. Role of combined addition of niobium and boron and of molybdenum and boron on hardenability in low carbon steels[J]. ISIJ International, 2004, 44(8):1431-1440.
[13] ZHU K Y, OBERBILLIG C, MUSIK C, et al. Effect of B and B plus Nb on the bainitic transformation in low carbon steels[J]. Materials Science and Engineering:A, 2011, 528(12):4222-4231.
[14] 刘东升, 王国栋, 刘相华, 等.奥氏体变形对低碳Mn-B-Nb-Ti钢连续冷却相变的影响[J].金属学报,1999,35(8):816-822. LIU D S, WANG G D, LIU X H, et al. Effect of austenite deformation on continuous cooling transformation of low carbon Mn-B-Nb-Ti steel[J]. Acta Metallurgica Sinica, 1999, 35(8):816-822.
[15] 沈斌,黄潮滨,孙彩娜,等.变形储能对高强度船板钢γ→α相变的影响[J].上海金属,2014,36(3):15-19. SHEN B, HUANG C B, SUN C N, et al. Effect of deformation energy on γ→α transformation of high strength ship plate steel[J]. Shanghai Metals, 2014, 36(3):15-19.
[16] CHEN J, TANG S, LIU Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel[J]. Materials Science and Engineering:A, 2013, 559:241-249.
[17] HU J, DU L X, WANG J J, et al. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling[J]. Materials Science and Engineering:A, 2013, 585:197-204.
[18] GLADMAN T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999, 15(1):30-36.
[19] 陈俊,唐帅,刘振宇,等.冷却方式对Nb-Ti微合金钢组织性能及沉淀行为的影响[J].金属学报,2012,48(4):441-449. CHEN J, TANG S, LIU Z Y, et al. Effect of cooling mode on microstructure, property and precipitation of Nb-Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2012, 48(4):441-449.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[4] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[5] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[6] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[7] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[8] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[9] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[10] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[11] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[12] 史振学, 刘世忠, 赵金乾, 王效光, 李嘉荣. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程, 2019, 47(5): 107-114.
[13] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[14] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[15] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn