Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 61-66    DOI: 10.11868/j.issn.1001-4381.2016.07.011
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
TC轴承激光增材制造工艺及组织性能研究
杨胶溪, 胡星, 王艳芳
北京工业大学 激光工程研究院, 北京 100124
Microstructure and Properties of Laser Additive Manufacturing TC Bearing
YANG Jiao-xi, HU Xing, WANG Yan-fang
Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(9562 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为解决常规方法制备TC轴承带来的磨损不均问题,提高TC轴承服役寿命,采用激光增材制造方法在钢制零件基体表面制备耐磨涂层。选用两套不同工艺参数分别在TC轴承内轴套外圆、外轴套内孔进行Cr3C2/Fe基耐磨材料的激光熔覆,获得了无气孔、裂纹且冶金质量优良的耐磨涂层。采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)检测分析手段进行形貌观察、成分分析、物相表征,并使用数字显微硬度计、摩擦磨损试验机、盐雾腐蚀实验箱分别对熔覆层进行硬度、耐磨性和耐腐蚀性进行测试。结果表明:TC轴承耐磨涂层的平均显微硬度为HV700,耐磨性为Ni60涂层的3倍,耐腐蚀性接近于316L不锈钢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨胶溪
胡星
王艳芳
关键词 激光熔覆TC轴承铁基碳化铬合金组织与性能    
Abstract:In order to solve the problem of uneven wear of TC bearing that conventional method brought and improve its service life,wear-resistant coating was fabricated on the surface of steel parts matrix with the method of laser additive manufacture. The Cr3C2/Fe based alloy was deposited by laser cladding technique on the inner-sleeve cylindrical and outer-sleeve bore of TC bearing with two different process parameters. The high-performance coating was obtained respectively, of cracks free,no pores and with good metallurgical quality. The morphology of the laser cladding coating was observed by scanning electronic microscope (SEM),the composition was analyzed by EDS,the phase transformation was characterized by XRD. The wear resistance,corrosion resistance and hardness of the laser cladding layer were tested by friction and wear tester,salt spray test chamber and digital micro-hardness tester respectively. The results show that the average micro-hardness of composite coating is HV700. The wear resistance of the composite coating is about 3 times as much as the Ni-based alloy. The corrosion resistance is close to 316L stainless steel.
Key wordslaser additive manufacturing    TC bearing    Cr3C2/Fe-base alloy    microstructure and property
收稿日期: 2014-10-22      出版日期: 2016-07-19
中图分类号:  TG174.44  
通讯作者: 杨胶溪(1971-),男,副教授,博士,主要从事激光熔覆成形技术的研究及应用,联系地址:北京朝阳区平乐园100号北京工业大学激光工程研究院(100124),E-mail:yangjiaoxi@bjut.edu.cn     E-mail: yangjiaoxi@bjut.edu.cn
引用本文:   
杨胶溪, 胡星, 王艳芳. TC轴承激光增材制造工艺及组织性能研究[J]. 材料工程, 2016, 44(7): 61-66.
YANG Jiao-xi, HU Xing, WANG Yan-fang. Microstructure and Properties of Laser Additive Manufacturing TC Bearing. Journal of Materials Engineering, 2016, 44(7): 61-66.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.011      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/61
[1] 杨宝德,范传友,吴志明,等. 螺杆钻具TC轴承的研制[J]. 石油机械,1992,20(6):1-4. YANG B D,FAN C Y,WU Z M,et al. Research on the TC bearing of screw drill[J]. China Petroleum Machinery,1992,20(6):1-4.
[2] 张大伟,雷廷权,田贵富. 激光熔覆及其在石油机械中的应用现状[J]. 大庆石油学院学报, 1997,21(4):60-64. ZHANG D W,LEI T Q,TIAN G F. Laser cladding and its applications in the petroleum machinery[J]. Journal of Daqing Petroleum Institute,1997,21(4):60-64.
[3] 许富东,张晓东,孙华鹏. 井下动力钻具用TC轴承接触问题的理论研究[J]. 石油矿场机械,2004,33(6):21-24. XU F D,ZHANG X D,SUN H P. Theoretical research of contact problem in TC bearing in down hole motor[J]. Oil Field Equipment,2004,33(6):21-24.
[4] 邱星武,李刚,邱玲. 激光熔覆技术发展现状及展望[J] 稀有金属与硬质合金,2008,36(3):54-58. QIU X W,LI G,QIU L. The latest development and prospects of laser cladding technology[J]. Rare Metals and Cemented Carbides, 2008,36(3):54-58.
[5] 张迪,单际国,任家烈. 高能束熔覆技术的研究现状及发展趋势[J]. 激光技术,2001,25(1):39-42. ZHANG D,SHAN J G,REN J L. Status and development of cladding with high power density beam[J]. Laser Technology,2001,25(1):39-42.
[6] NURMINEN J,NÄKKI J,VUORISTO P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding[J]. Journal of Refractory Metals & Hard Materials,2009,27(2):472-478.
[7] 袁庆龙,冯旭东,曹晶晶,等. 激光熔覆技术研究进展[J]. 材料导报,2010,24(2):112-116. YUAN Q L,FENG X D,CAO J J,et al. Research progress in laser cladding technology[J]. Materials Review,2010,24(2):112-116.
[8] 李养良,金海霞,林树忠,等. 激光熔覆技术的研究现状与发展趋势[J]. 热处理技术与装备,2009,30(4):1-5. LI Y L,JIN H X,LIN S Z,et al. Research progress and development trend of laser cladding technology[J]. Heat Treatment Technology and Equipment,2009,30(4):1-5.
[9] 曲选辉,张国庆,章林. 粉末冶金技术在航空发动机中的应用[J]. 航空材料学报,2014,34(1):1-10. QU X H,ZHANG G Q,ZHANG L. Applications of powder metallurgy technologies in aero-engines[J]. Journal of Aeronautical Materials,2014,34(1):1-10.
[10] WANG Y H,TU D L,CUI L S. The ceramic phases in metal/ceramic composite coatings produced by laser cladding and their wear mechanism[J]. China Surface Engineering,1998,11(4):29-33.
[11] PEI Y T,OUYANG J H,LEI T Q. Development of laser clad wear resistant composite coatings[J]. Materials Review,1996,10(1):60-63.
[12] WU X J,XING J D,FU H G,et al. Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron[J]. Materials Science and Engineering,2007,457(1-2):180-185.
[13] BEDOLLA-JACUINDE A,CORREA R,QUEZADA J G,et al. Effect of titanium on the as-cast microstructure of a 16% chromium white iron[J]. Materials Science and Engineering,2005,398(1-2):297-308.
[14] LEIKO A,NAVARA E. Microstructural characterization of high-carbon ferrochromium[J]. Materials Characterization,1996,36(4-5):349-356.
[15] WU C F,MA M X,LIU W J,et al. Laser producing Fe-based composite coating reinforced by in situ synthesized multiple carbide particles[J]. Materials Letters,2008,62(17-18):3077-3080.
[16] 王智慧,赵雪飞,贺定勇,等. 等离子熔覆含亚微米碳化妮铁基耐磨合金组织与性能的研究[J]. 材料工程,2015,43(7):73-79. WANG Z H,ZHAO X F,HE D Y, et al. Microstructure and properties of plasma cladding Fe-based wear-resisting alloy containing submicron NbC[J]. Journal of Materials Engineering,2015,43(7):73-79.
[17] LI S,HU Q W,ZENG X Y. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer[J]. Applied Surface Science,2005,240(1-4):63-70.
[18] WANG X H,ZHANG M,LIU X M,et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding[J]. Surface and Coating Technology,2008,202(15):3600-3606.
[19] DU L Z,HUANG C B,ZHANG W G,et al. Preparation and wear performance of NiCr/Cr3C2-NiCr/hBN plasma sprayed composite coating[J]. Surface and Coating Technology,2011,205(12):3722-3728.
[1] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[2] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[3] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[4] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[5] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[6] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[7] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[8] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[9] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[10] 陈明慧, 朱红梅, 王新林. 激光熔覆制备金属表面非晶涂层研究进展[J]. 材料工程, 2017, 45(1): 120-128.
[11] 杨胶溪, 张健全, 常万庆, 王艳芳, 陈虹, 王喜兵. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J]. 材料工程, 2016, 44(6): 110-116.
[12] 马世榜, 苏彬彬, 王旭, 夏振伟, 刘敬, 徐杨. 基于激光熔覆SiC/Ni复合涂层的耐磨性[J]. 材料工程, 2016, 44(1): 77-82.
[13] 马娅娜, 杜林秀, 胡军. Mn含量对热轧超低碳钛低合金钢组织与力学性能的影响[J]. 材料工程, 2015, 43(9): 1-5.
[14] 闫世兴, 董世运, 徐滨士, 王玉江, 任维彬, 方金祥. 预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J]. 材料工程, 2015, 43(1): 30-36.
[15] 周冰, 康永林, 祁明凡, 张欢欢, 朱国明, 吴征洋. AZ91D镁合金强制对流流变压铸组织与性能[J]. 材料工程, 2014, 0(10): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn