Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 67-72    DOI: 10.11868/j.issn.1001-4381.2016.07.012
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能
杨旭东1, 邹田春2, 陈亚军1, 王付胜1, 何小垒1
1. 中国民航大学 中欧航空工程师学院, 天津 300300;
2. 中国民航大学 天津市民用航空器适航与维修重点实验室, 天津 300300
Fabrication and Mechanical Properties of Aluminum Matrix Composites Reinforced with Carbon Nanotubes and Alumina
YANG Xu-dong1, ZOU Tian-chun2, CHEN Ya-jun1, WANG Fu-sheng1, HE Xiao-lei1
1. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
2. Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(23628 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用化学气相沉积结合机械球磨的方法制备了碳纳米管(CNTs)和Al2O3颗粒混杂增强铝基复合材料,研究了球磨时间、Al2O3含量对复合材料组织和力学性能的影响。结果表明:本方法可以获得CNTs和Al2O3颗粒在铝基体内的均匀分散。随球磨时间的增加,复合材料的硬度随之增大;当球磨时间为180min时,复合材料硬度达纯铝的2.1倍。此外,随Al2O3颗粒含量的增加,复合材料的硬度和压缩屈服强度均不断提高。当Al2O3的质量分数为4%时,CNTs-Al2O3/Al复合材料的硬度达112.1HV,为纯铝的2.8倍;压缩屈服强度达416MPa,为纯铝的4.6倍,说明CNTs和Al2O3的混杂加入发挥了良好的协同增强效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭东
邹田春
陈亚军
王付胜
何小垒
关键词 碳纳米管氧化铝球磨铝基复合材料    
Abstract:The Al composites reinforced by carbon nanotubes (CNTs) and Al2O3 particles were fabricated by chemical vapor deposition (CVD) and ball milling method. The effect of milling time and Al2O3 content on the microstructure and mechanical properties of composites was studied. The results show that the uniform dispersion of CNTs and Al2O3 reinforcements in the Al matrix can be achieved by using this method. As the milling time increases, the microhardness of composite increases. When the milling time is 180min, the microhardness of composites reaches 2.1 times of pure Al. In addition, the microhardness and compressive yield stress of CNTs-Al2O3/Al composites both increase as the Al2O3 content increases. When the mass fraction of CNT reaches 4%, the microhardness and compressive yield stress of CNTs-Al2O3/Al composites are 112.1HV and 426MPa, which are the 2.8 and 4.6 times as large as that of pure Al, respectively. The results indicate that the hybrid addition of CNTs and Al2O3 play good synergic enhanced effect.
Key wordscarbon nanotubes    alumina    ball milling    Al matrix composite
收稿日期: 2015-02-01      出版日期: 2016-07-19
中图分类号:  TB331  
通讯作者: 杨旭东(1985-),男,讲师,博士,从事铝合金及铝基复合材料研究,联系地址:天津市东丽区中国民航大学北院中欧航空工程师学院(300300),E-mail:xdyangtj@163.com     E-mail: xdyangtj@163.com
引用本文:   
杨旭东, 邹田春, 陈亚军, 王付胜, 何小垒. 碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程, 2016, 44(7): 67-72.
YANG Xu-dong, ZOU Tian-chun, CHEN Ya-jun, WANG Fu-sheng, HE Xiao-lei. Fabrication and Mechanical Properties of Aluminum Matrix Composites Reinforced with Carbon Nanotubes and Alumina. Journal of Materials Engineering, 2016, 44(7): 67-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.012      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/67
[1] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[2] 杨益,杨胜良. 碳纳米管增强金属基复合材料的研究现状及展望[J]. 材料导报,2007, 21(5):182-184. YANG Y, YANG S L. Research status and development prospect of mental matrix composite reinforced by carbon nanotubes[J]. Materials Review, 2007, 21(5):182-184.
[3] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology, 2001, 61:1899-1912.
[4] COLEMAN J N, KHAN U, BLAU W J, et al. Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44:1624-1652.
[5] NEUBAUER E, KITZMANTEL M, HULMAN M, et al. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J]. Composites Science and Technology, 2010, 70:2228-2236.
[6] 钟蓉,丛洪涛,成会明,等. 单壁纳米碳管增强纳米铝基复合材料的制备[J]. 材料研究学报,2002,16(4):344-348. ZHONG R, CONG H T, CHENG H M, et al. Preparation of SWNTs/nano-Al composites[J]. Chinese Journal of Materials Research, 2002, 16(4):344-348.
[7] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55(1):41-64.
[8] JIANG L, LI Z, FAN G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50:1993-1998.
[9] BAKSHI S R, AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49:533-544.
[10] KUZUMAKI T, MIYAZAWA K, ICHINOSE H, et al. Processing of carbon nanotube reinforced aluminum composite[J]. Journal of Materials Research, 1998, 13:2445-2449.
[11] HE C N, ZHAO N Q, SHI C S, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials, 2007, 19:1128-1132.
[12] YANG X D, SHI C S, HE C N, et al. Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites[J]. Composites Part A, 2011, 42:1833-1839.
[13] ESAWI A, MORSI K, SAYED A, et al. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites[J]. Composites Science and Technology, 2010, 70:2237-2241.
[14] ESAWI A, MORSI K, SAYED A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites Part A, 2011, 42:234-243.
[15] DENG C F, WANG D Z, ZHANG X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering:A, 2007, 444(1-2):138-145.
[16] 陈亚光,蔡晓兰,王开军,等. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J].材料工程,2014, (11):55-61. CHEN Y G, CAI X L, WANG K J, et al. Mechanical properties and fracture feature of CNTs/Al-5%Mg composite prepared by high-energy ball milling[J], Journal of Materials Engineering, 2014, (11):55-61.
[17] KWON H, CHO S, LEPAROUX M, et al. Dual-nanoparticulate-reinforced aluminum matrix composite materials[J]. Nanotechnology, 2012, 23(22):225704.
[18] KWON H, SAARNA M, YOON S, et al. Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials[J]. Materials Science and Engineering:A, 2014, 590:338-345.
[19] YANG X D, LIU E Z, SHI C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds, 2013, 563:216-220.
[20] SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1-2):1-184.
[21] ESAWI A, MORSI K. Dispersion of carbon nanotubes (CNTs) in aluminum powder[J]. Composites, 2007, 38:646-650.
[22] WANG L, CHOI H, MYOUNG J, et al. Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites[J]. Carbon, 2009, 47:3427-3433.
[23] ESAWI A, MORSI K, SAYED A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites[J]. Materials Science and Engineering:A, 2009, 508(1):167-173.
[24] GEORGE R, KASHYAP K, RAHUL R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia, 2005, 53:1159-1163.
[1] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[2] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[3] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[4] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[5] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[6] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[7] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[8] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[9] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[10] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[11] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[12] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[13] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[14] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[15] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn