Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 67-72    DOI: 10.11868/j.issn.1001-4381.2016.07.012
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能
杨旭东1, 邹田春2, 陈亚军1, 王付胜1, 何小垒1
1. 中国民航大学 中欧航空工程师学院, 天津 300300;
2. 中国民航大学 天津市民用航空器适航与维修重点实验室, 天津 300300
Fabrication and Mechanical Properties of Aluminum Matrix Composites Reinforced with Carbon Nanotubes and Alumina
YANG Xu-dong1, ZOU Tian-chun2, CHEN Ya-jun1, WANG Fu-sheng1, HE Xiao-lei1
1. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
2. Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(23628 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用化学气相沉积结合机械球磨的方法制备了碳纳米管(CNTs)和Al2O3颗粒混杂增强铝基复合材料,研究了球磨时间、Al2O3含量对复合材料组织和力学性能的影响。结果表明:本方法可以获得CNTs和Al2O3颗粒在铝基体内的均匀分散。随球磨时间的增加,复合材料的硬度随之增大;当球磨时间为180min时,复合材料硬度达纯铝的2.1倍。此外,随Al2O3颗粒含量的增加,复合材料的硬度和压缩屈服强度均不断提高。当Al2O3的质量分数为4%时,CNTs-Al2O3/Al复合材料的硬度达112.1HV,为纯铝的2.8倍;压缩屈服强度达416MPa,为纯铝的4.6倍,说明CNTs和Al2O3的混杂加入发挥了良好的协同增强效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭东
邹田春
陈亚军
王付胜
何小垒
关键词 碳纳米管氧化铝球磨铝基复合材料    
Abstract:The Al composites reinforced by carbon nanotubes (CNTs) and Al2O3 particles were fabricated by chemical vapor deposition (CVD) and ball milling method. The effect of milling time and Al2O3 content on the microstructure and mechanical properties of composites was studied. The results show that the uniform dispersion of CNTs and Al2O3 reinforcements in the Al matrix can be achieved by using this method. As the milling time increases, the microhardness of composite increases. When the milling time is 180min, the microhardness of composites reaches 2.1 times of pure Al. In addition, the microhardness and compressive yield stress of CNTs-Al2O3/Al composites both increase as the Al2O3 content increases. When the mass fraction of CNT reaches 4%, the microhardness and compressive yield stress of CNTs-Al2O3/Al composites are 112.1HV and 426MPa, which are the 2.8 and 4.6 times as large as that of pure Al, respectively. The results indicate that the hybrid addition of CNTs and Al2O3 play good synergic enhanced effect.
Key wordscarbon nanotubes    alumina    ball milling    Al matrix composite
收稿日期: 2015-02-01      出版日期: 2016-07-19
1:  TB331  
通讯作者: 杨旭东(1985-),男,讲师,博士,从事铝合金及铝基复合材料研究,联系地址:天津市东丽区中国民航大学北院中欧航空工程师学院(300300),E-mail:xdyangtj@163.com     E-mail: xdyangtj@163.com
引用本文:   
杨旭东, 邹田春, 陈亚军, 王付胜, 何小垒. 碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程, 2016, 44(7): 67-72.
YANG Xu-dong, ZOU Tian-chun, CHEN Ya-jun, WANG Fu-sheng, HE Xiao-lei. Fabrication and Mechanical Properties of Aluminum Matrix Composites Reinforced with Carbon Nanotubes and Alumina. Journal of Materials Engineering, 2016, 44(7): 67-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.012      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/67
[1] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[2] 杨益,杨胜良. 碳纳米管增强金属基复合材料的研究现状及展望[J]. 材料导报,2007, 21(5):182-184. YANG Y, YANG S L. Research status and development prospect of mental matrix composite reinforced by carbon nanotubes[J]. Materials Review, 2007, 21(5):182-184.
[3] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology, 2001, 61:1899-1912.
[4] COLEMAN J N, KHAN U, BLAU W J, et al. Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44:1624-1652.
[5] NEUBAUER E, KITZMANTEL M, HULMAN M, et al. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J]. Composites Science and Technology, 2010, 70:2228-2236.
[6] 钟蓉,丛洪涛,成会明,等. 单壁纳米碳管增强纳米铝基复合材料的制备[J]. 材料研究学报,2002,16(4):344-348. ZHONG R, CONG H T, CHENG H M, et al. Preparation of SWNTs/nano-Al composites[J]. Chinese Journal of Materials Research, 2002, 16(4):344-348.
[7] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55(1):41-64.
[8] JIANG L, LI Z, FAN G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50:1993-1998.
[9] BAKSHI S R, AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49:533-544.
[10] KUZUMAKI T, MIYAZAWA K, ICHINOSE H, et al. Processing of carbon nanotube reinforced aluminum composite[J]. Journal of Materials Research, 1998, 13:2445-2449.
[11] HE C N, ZHAO N Q, SHI C S, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials, 2007, 19:1128-1132.
[12] YANG X D, SHI C S, HE C N, et al. Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites[J]. Composites Part A, 2011, 42:1833-1839.
[13] ESAWI A, MORSI K, SAYED A, et al. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites[J]. Composites Science and Technology, 2010, 70:2237-2241.
[14] ESAWI A, MORSI K, SAYED A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites Part A, 2011, 42:234-243.
[15] DENG C F, WANG D Z, ZHANG X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering:A, 2007, 444(1-2):138-145.
[16] 陈亚光,蔡晓兰,王开军,等. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J].材料工程,2014, (11):55-61. CHEN Y G, CAI X L, WANG K J, et al. Mechanical properties and fracture feature of CNTs/Al-5%Mg composite prepared by high-energy ball milling[J], Journal of Materials Engineering, 2014, (11):55-61.
[17] KWON H, CHO S, LEPAROUX M, et al. Dual-nanoparticulate-reinforced aluminum matrix composite materials[J]. Nanotechnology, 2012, 23(22):225704.
[18] KWON H, SAARNA M, YOON S, et al. Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials[J]. Materials Science and Engineering:A, 2014, 590:338-345.
[19] YANG X D, LIU E Z, SHI C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds, 2013, 563:216-220.
[20] SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1-2):1-184.
[21] ESAWI A, MORSI K. Dispersion of carbon nanotubes (CNTs) in aluminum powder[J]. Composites, 2007, 38:646-650.
[22] WANG L, CHOI H, MYOUNG J, et al. Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites[J]. Carbon, 2009, 47:3427-3433.
[23] ESAWI A, MORSI K, SAYED A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites[J]. Materials Science and Engineering:A, 2009, 508(1):167-173.
[24] GEORGE R, KASHYAP K, RAHUL R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia, 2005, 53:1159-1163.
[1] 郑辉东. 3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能[J]. 材料工程, 2016, 44(6): 1-8.
[2] 彭美华, 程西云, 周彪, 严茂伟, 张建锋. CNTs-Al2O3多孔陶瓷复合材料的制备与性能[J]. 材料工程, 2016, 44(6): 117-122.
[3] 刘强, 柯黎明, 刘奋成, 黄春平. 多壁碳纳米管增强铝基复合材料的高温力学性能[J]. 材料工程, 2016, 44(4): 20-25.
[4] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[5] 夏伶勤, 韩建民, 崔世海, 杨智勇, 李卫京. SiCp/A356复合材料微弧氧化陶瓷膜的生长规律与性能[J]. 材料工程, 2016, 44(1): 40-46.
[6] 谭英梅, 曹国剑, 李双, 古乐. 球磨制备轴承珠表面自润滑涂层及其摩擦性能[J]. 材料工程, 2015, 43(9): 19-24.
[7] 李铮, 蔡晓兰, 周蕾, 易峰, 余明俊, 张文忠, 郭鲤. CNTs/Al5083复合材料力学性能及增强机制[J]. 材料工程, 2015, 43(8): 1-6.
[8] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[9] 杨淑敏, 李海涛, 顾建军, 韩伟, 杨巍, 岂云开. 彩色多孔氧化铝薄膜的制备和光学特性[J]. 材料工程, 2015, 43(4): 30-36.
[10] 代士维, 张乐天, 李俊, 乔新峰, 马跃. 蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响[J]. 材料工程, 2015, 43(10): 7-13.
[11] 丁雨田, 王冬强, 胡勇, 彭和思, 马国俊. Mg2B2O5W,SiC和Gr颗粒增强6061Al基复合材料的摩擦磨损行为[J]. 材料工程, 2015, 43(10): 42-48.
[12] 何天兵, 胡仁伟, 何晓磊, 李沛勇. 碳纳米管增强金属基复合材料的研究进展[J]. 材料工程, 2015, 43(10): 91-101.
[13] 刘顾, 汪刘应, 程建良, 王炜, 吴永发. 碳纳米管吸波材料研究进展[J]. 材料工程, 2015, 43(1): 104-112.
[14] 张宗华, 刘刚, 张晖, 张忠, 王小群. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, 0(9): 39-44.
[15] 刘慧敏, 王楠, 苏娟. 原位Al2O3/Al-Cu复合材料的制备与组织研究[J]. 材料工程, 2014, 0(11): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn