Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 107-112    DOI: 10.11868/j.issn.1001-4381.2016.07.018
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
负载纳米银EVA复合发泡材料的制备及其抗菌性能
郑辉东1, 邱洪峰2, 郑玉婴2, 刘艺2, 连汉青2, 陈志杰2
1. 福州大学 石油化工学院, 福州 350108;
2. 福州大学 材料科学与工程学院, 福州 350108
Preparation and Antibacterial Property of EVA Composite Foams Supported by Nano-silver
ZHENG Hui-dong1, QIU Hong-feng2, ZHENG Yu-ying2, LIU Yi2, LIAN Han-qing2, CHEN Zhi-jie2
1. School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China;
2. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
全文: PDF(15054 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用原位还原法在EVA复合发泡材料表面负载银纳米颗粒,制备具有抗菌性能的负载纳米银EVA复合发泡材料,通过场发射扫描电镜、X射线光电子能谱、电感耦合等离子体发射光谱以及X射线衍射等表征其形貌及结构,并分别采用热失重和抗菌实验对所制备复合发泡材料的热稳定性和抗菌性进行评价。结果表明:EVA复合发泡材料表面均匀分布的颗粒状物质为单质银,其直径约为20nm;负载纳米银后EVA复合发泡材料在600℃时残炭率提高到3.22%;抗菌实验分析表明样品具有良好的抗菌持久性,在洗涤50次后对大肠杆菌、金黄色葡萄球菌抗菌率分别可达到98%和99%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑辉东
邱洪峰
郑玉婴
刘艺
连汉青
陈志杰
关键词 EVA纳米银复合发泡材料原位还原抗菌性能    
Abstract:Through in-situ reduction method, Ag nanoparticles were loaded on the surfaces of EVA composite foams. A series of investigations, including field emission scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction, were carried out to characterize the samples. Thermal stability and antibacterial properties of the products were evaluated by thermo gravimetric analysis and antibacterial test, respectively. Results show that nanoparticles, with an average particle size of 20nm, are elemental silver and decorated on the surface of EVA composite foams in uniform and regular stacks; after the presence of Ag nanoparticles, char yield of the products at 600℃ could increase to 3.22%; the samples have good persistent antibacterial effects and after 50 washing cycles, the antibacterial rate reaches above 98% and 99% against escherichia coli and staphylococcus aureus, respectively.
Key wordsethylene-vinyl acetate copolymer    nano-silver    composite foam    in-situ reduction    antibacterial property
收稿日期: 2015-03-24      出版日期: 2016-07-19
中图分类号:  TB332  
通讯作者: 郑玉婴(1959-),女,教授,博士,研究方向:功能高分子复合材料,联系地址:福建省福州市闽侯县上街镇大学城学园路2号福州大学新校区材料科学与工程学院(350108),E-mail:yyzheng@fzu.edu.cn     E-mail: yyzheng@fzu.edu.cn
引用本文:   
郑辉东, 邱洪峰, 郑玉婴, 刘艺, 连汉青, 陈志杰. 负载纳米银EVA复合发泡材料的制备及其抗菌性能[J]. 材料工程, 2016, 44(7): 107-112.
ZHENG Hui-dong, QIU Hong-feng, ZHENG Yu-ying, LIU Yi, LIAN Han-qing, CHEN Zhi-jie. Preparation and Antibacterial Property of EVA Composite Foams Supported by Nano-silver. Journal of Materials Engineering, 2016, 44(7): 107-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.018      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/107
[1] 郑玉婴. 功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J]. 材料工程, 2015, 43(2):96-102. ZHENG Y Y. Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite films[J]. Journal of Materials Engineering, 2015, 43(2):96-102.
[2] WANG B, WANG M H, XING Z, et al. Preparation of radiation crosslinked foams from low-density polyethylene/ethylene-vinyl acetate (LDPE/EVA) copolymer blend with a supercritical carbon dioxide approach[J]. Journal of Applied Polymer Science, 2013, 127(2):912-918.
[3] MAITI M, JASRA R V, KUSUM S K, et al. Microcellular foam from ethylene vinyl acetate/polybutadiene rubber (EVA/BR) based thermoplastic elastomers for footwear applications[J]. Industrial & Engineering Chemistry Research, 2012, 51(32):10607-10612.
[4] 杨中文. 塑料用抗菌剂的研究进展[J]. 国外塑料, 2010, 28(9):45-48. YANG Z W. Research progress on antibacterial agent for plastic at home and abroad[J]. World Plastics, 2010, 28(9):45-48.
[5] 高党鸽, 陈琛, 吕斌, 等. 原位制备季铵盐聚合物/纳米ZnO复合抗菌剂[J]. 材料工程, 2015, 43(6):38-45. GAO D G, CHEN C, LYU B, et al. Synthesis polymer quaternary ammonium salt/nano-ZnO composite antibacterial agent via in-situ method[J]. Journal of Materials Engineering, 2015, 43(6):38-45.
[6] CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent:ion, nanoparticle, and metal[J]. Angewandte Chemie International Edition, 2013, 52(6):1636-1653.
[7] LI T, ZHANG Y Y, SONG Z Y, et al. Preparation and characterization of antibacterial silver loaded montmorillonite under microwave irradiation[J]. Science and Engineering of Composite Materials, 2013, 20(1):15-22.
[8] TSIAGGALI M A, ANDREADOU E G, HATZIDIMITRIOU A G, et al. Copper (I) halide complexes of N-methylbenzothiazole-2-thione:synthesis, structure, luminescence, antibacterial activity and interaction with DNA[J]. Journal of Inorganic Biochemistry, 2013, 121:121-128.
[9] 马威, 拓婷婷, 张淑芬. 抗菌剂研究进展[J]. 精细化工, 2012, 29(6):521-525. MA W, TUO T T, ZHANG S F. Research development of antibacterial agents[J]. Fine Chemicals, 2012, 29(6):521-525.
[10] 李淳, 孙蓉, 曾秋苑, 等. 有机高分子抗菌剂的制备及抗菌机理[J]. 高分子通报, 2011, (3):79-85. LI C, SUN R, ZENG Q Y, et al. Preparation and antimicrobial mechanism of organic polymeric biocides[J]. Polymer Bulletin, 2011, (3):79-85.
[11] 谢小保, 李文茹, 曾海燕, 等. 纳米银对大肠杆菌的抗菌作用及其机制[J]. 材料工程, 2008,(10):106-109. XIE X B, LI W R, ZENG H Y, et al. Activity and mechanism of silver nanoparticles on escherichia coli[J]. Journal of Materials Engineering, 2008,(10):106-109.
[12] MAO H, WANG C, WANG K. Gelation performance of cationic gemini silica sol with inorganic salts and its antibacterial property analysis[J]. Journal of Dispersion Science and Technology, 2014, 35(9):1208-1213.
[13] RAO R, SHILPA-CHAKRA C, RAO K V. Eco-friendly synthesis of silver nanoparticles using carica papaya extract for anti bacterial applications[J]. Advanced Materials Research, 2013, 629:279-283.
[14] VIJAY-KUMAR P P N, PAMMI S V N, KOLLU P, et al. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity[J]. Industrial Crops and Products, 2014, 52:562-566.
[15] LEE H, LEE Y, STATZ A R, et al. Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers[J]. Advanced Materials, 2008, 20(9):1619-1623.
[16] HAN S W, KIM Y, KIM K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles:TEM, UV/VIS, XPS,and FTIR analysis[J]. Journal of Colloid and Interface Science, 1998, 208(1):272-278.
[17] WAGNER C D. Handbook of X-ray Photoelectron Spectroscopy:A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy[M]. Eden Prairie, MN:Perkin-Elmer Corp, Physical Electronics Division, 1979.
[18] AKHAVAN O, ABDOLAHAD M, ASADI R. Storage of Ag nanoparticles in pore-arrays of SU-8 matrix for antibacterial applications[J]. Journal of Physics D:Applied Physics, 2009, 42(13):135416-135422.
[19] WANG H E, QIAN D. Synthesis and electrochemical properties of α-MnO2 microspheres[J]. Materials Chemistry and Physics, 2008, 109(2-3):399-403.
[20] 黄雯, 王宇轩, 崔菲菲, 等. 化学法合成过氧化银及其电化学性能[J]. 电源技术研究与设计, 2013, 37(6):993-996. HUANG W, WANG Y X, CUI F F, et al. Electrochemical performance of chemically prepared AgO[J]. Chinese Journal of Power Sources, 2013, 37(6):993-996.
[1] 黄连根, 郑玉婴. 树枝状介孔二氧化硅的制备及其负载纳米银的抗菌性[J]. 材料工程, 2018, 46(10): 135-141.
[2] 叶伟杰, 陈楷航, 蔡少龄, 陈利科, 钟同苏, 王小英. 纳米银的合成及其抗菌应用研究进展[J]. 材料工程, 2017, 45(9): 22-30.
[3] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[4] 李雅琳, 张健, 平清伟, 牛梅红, 石海强, 李娜. 硅藻土基无机抗菌材料的制备与性能[J]. 材料工程, 2016, 44(3): 72-76.
[5] 曹洋, 刘平, 魏红梅, 林铁松, 何鹏, 顾小龙. 液相化学还原法制备纳米银焊膏及其连接性[J]. 材料工程, 2015, 43(4): 79-84.
[6] 张小敏, 张振忠, 赵芳霞, 丘泰. 正交设计优化制备高分散性纳米银粉研究[J]. 材料工程, 2013, 0(11): 38-42,49.
[7] 李小兵, 刘莹. 医用聚氨酯材料表面化学法镀银的前处理工艺研究[J]. 材料工程, 2010, 0(9): 86-90.
[8] 闫剑锋, 邹贵生, 李健, 吴爱萍. 纳米银焊膏的烧结性能及其用于铜连接的研究[J]. 材料工程, 2010, 0(10): 5-8.
[9] 谢小保, 李文茹, 曾海燕, 欧阳友生, 陈仪本. 纳米银对大肠杆菌的抗菌作用及其机制[J]. 材料工程, 2008, 0(10): 106-109.
[10] 刘荣敏, 张鑫华, 郭振芳, 顾国红. 添加EVA对精铸叶片用模料性能的影响[J]. 材料工程, 1994, 0(11): 17-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn