Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 113-118    DOI: 10.11868/j.issn.1001-4381.2016.07.019
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
P对Sn-Bi合金组织与性能的影响
王小京1, 刘彬1, 周慧玲2, 王俭辛1, 刘宁1, 李天阳1
1. 江苏科技大学 材料科学与工程学院, 江苏 镇江 212003;
2. 华为技术有限公司 坂田华为基地, 广东 深圳 518129
Effect of P on Microstructure and Mechanical Properties of Sn-Bi Solder
WANG Xiao-jing1, LIU Bin1, ZHOU Hui-ling2, WANG Jian-xin1, LIU Ning1, LI Tian-yang1
1. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China;
2. Bantian Huawei Base, Huawei Technologies Co., Ltd., Shenzhen 518129, Guangdong, China
全文: PDF(10095 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过考察P在纯锡中的作用,探讨微量P,P/Cu/Zn对Sn-Bi基合金焊料组织、拉伸性能、形变断裂的影响。结果显示在纯锡中添加1%(质量分数,下同) P,能够提高强度、刚度,降低塑性;但仅0.1%的P会恶化Sn-Bi合金的力学性能,这和P元素在金属基体内的存在形式以及基体组织有关。在锡基合金中,P以Sn-P合金的形式分布在相界或晶界上,限制载荷作用下金属的形变扩散与转移。因此在Sn-1P合金中,分布在β-Sn基体上的化合物,起强化作用;在Sn-Bi合金中,Sn-P化合物则加剧加载过程中的形变不匹配,成为裂纹萌生与扩展的薄弱环节,导致合金倾向于脆性断裂;最后,在加入微量P元素的基础上再进行Zn/Cu的合金化,可以改善Sn-Bi合金系列的微观组织,提高强度,增加合金最大流变应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王小京
刘彬
周慧玲
王俭辛
刘宁
李天阳
关键词 微观组织拉伸性能断裂PSn-Bi    
Abstract:Micro alloy metals P or P/Cu/Zn were added into Sn-Bi alloy to investigate the doping effects on microstructure, mechanical property, deformation fracture from the function of P in pure tin. The results show that doping 1%( mass fraction, same as below) P to pure tin can improve the strength and stiffness, decrease the plasticity. Only 0.1%P additive degenerates the mechanical property of Sn-Bi alloy, this is related to the existing form of element P in the base metal and the microstructure of the base metal. In Sn base alloy, P is distributed in phase or grain boundaries in the form of Sn-P intermetallic compounds (IMC), restricting the diffusion and shifting of deformation. Therefore, Sn-1P alloy, IMC distributed in beta-tin base plays a role of strengthening in pure tin doped situation, in Sn-Bi alloy instead, enhancing the deformation mismatch under loading becoming the weak spots where cracks may initiate and propagate, and leading to brittle fracture . Finally, addition of P/Zn/Cu simultaneously to Sn-Bi alloy, the doping can optimize the microstructure, improve the strength and enhance the ultimate tensile strength (UTS) of Sn-Bi alloys.
Key wordsmicrostructure    tensile property    fracture    P    Sn-Bi
收稿日期: 2014-07-25      出版日期: 2016-07-19
中图分类号:  TG425.1  
通讯作者: 王小京(1977-),女,讲师,博士,研究方向为电子封装可靠性及封装材料,联系地址:江苏科技大学材料学院(212003),E-mail:wxj@just.edu.cn     E-mail: wxj@just.edu.cn
引用本文:   
王小京, 刘彬, 周慧玲, 王俭辛, 刘宁, 李天阳. P对Sn-Bi合金组织与性能的影响[J]. 材料工程, 2016, 44(7): 113-118.
WANG Xiao-jing, LIU Bin, ZHOU Hui-ling, WANG Jian-xin, LIU Ning, LI Tian-yang. Effect of P on Microstructure and Mechanical Properties of Sn-Bi Solder. Journal of Materials Engineering, 2016, 44(7): 113-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.019      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/113
[1] TONG X C. Thermal Interface Materials in Electronic Packaging,in Advanced Materials for Thermal Management of Electronic Packaging[M]. London:Springer,2011.305-371.
[2] ZHANG L,XUE S B,GAO L L,et al. Development of Sn-Zn lead-free solders bearing alloying elements[J]. Journal of Materials Science:Materials in Electronics,2010,21(1):1-15.
[3] LIU C Z,KANG T Y,WEI W,et al. Effect of high intensity magnetic field on intermetallic compounds growth in SnBi/Cu microelectronic interconnect[J]. Journal of Alloys and Compounds,2011,509(33):8475-8477.
[4] CHEN S,ZHANG L,LIU J,et al. A reliability study of nanoparticles reinforced composite lead-free solder[J]. Mater Trans,2010,51(10):1720-1726.
[5] ZHU Q S,SONG H Y,LIU H Y,et al. Effect of Zn addition on microstructure of Sn-Bi joint[C]//Beijing:Proceedings of the 9th ICEPT-HDP,2009:1043-1046.
[6] DUTCHAK Y I,QSIPENKO V P,PANASYUK P V. Thermal conductivity of Sn-Bi alloys in the solid and liquid states[J]. Soviet Physics Journal,1968,11(10):145-147.
[7] ZANG L,YUAN Z,ZHU Y,et al. Spreading process and interfacial characteristic of Sn-17Bi-0.5Cu/Ni at temperatures ranging from 523 K to 673 K[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414(11):57-65.
[8] 何鹏,吕晓春,张斌斌,等. 合金元素对Sn-57Bi无铅钎料组织及韧性的影响[J]. 材料工程,2010,(10):13-17,31 HE P,LU X C,ZHANG B B,et al.Effect of alloy element on microstructure and impact toughness of Sn-57Bi lead-free solders[J].Journal of Materials Engineering,2010,(10):13-17,31.
[9] WANG X J,ZHU Q S,LIU B,et al. Effect of doping Al on the liquid oxidation of Sn-Bi-Zn solder[J]. J Mater Sci:Mater Electron,2014,25(5):2297-2304.
[10] XIAN A P,GONG G L. Surface oxidation of molten Sn-0.07 wt.% P in air at 280℃[J]. Journal of Materials Research,2008,23(6):1532-1536.
[11] FU X,ZHOU J,SUN Y,et al. Effect of phosphorus on microstructure and properties of Sn-8Zn-3Bi lead-free solder[J]. Journal of Southeast University(Natural Science Edition),2006,36(5):832-835.
[12] GLAZER J. Metallurgy of low temperature of Pb-free solders for electronic assemble[J]. International Materials Reviews,1995,40(2):65-93.
[13] KILINSKI T J,LESNIAK J R,SANDOR B I. Solder Joint Reliability:Theory and Application[M]. New York:Springer,1991.384-405.
[14] LAI Y S,YANG P F,YAH C L. Experimental studies of board-level reliability of chip-scale packages subjected to JEDEC drop test condition[J]. Microelectronics Reliability,2006,46(2-4):645-650.
[15] SUH D,KIM D W,LIU P,et al. Effects of Ag content on fracture resistance of Sn-Ag-Cu lead-free solders under high-strain rate conditions[J]. Materials Science and Engineering:A,2007,460-461(15):595-603.
[16] KIM H,ZHANG M,KUMAR C M,et al. Improved drop reliability performance with lead free solders of low Ag content and their failure modes[C]//Reno NV:57th Electronic Components and Technology Conference,2007:962-967.
[17] ABTEW M,SELVADURAY G. Lead-free solders in microelectronics[J]. Materials Science & Engineering:Reports,2000,27(5-6):95-141.
[18] GLAZER J. Metallurgy of low temperature of Pb-free solders for electronic assemble[J]. International Materials Reviews,1995,40(2):65-93.
[19] WANG F,GAO F,QIAN Y. Depressing effect of 0.2 wt.% Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging[J]. J Electron Mater,2006,35(10):1818-1824.
[20] WANG X J, WANG Y L,WANG F J, et al. Effects of Zn, Zn-Al and Zn-P additions on the tensile properties of Sn-Bi solder[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6):1159-1164.
[21] LI G,SHI Y,HAO H,et al. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder[J]. J Alloys Compd,2010,491(1-2):382-385.
[1] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[2] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[3] 叶锦宗, 李锦棒, 周宁宁, 曹均, 卿涛, 蒋世宇, 于爱兵. 成型工艺对多孔PI材料摩擦学及力学性能的影响[J]. 材料工程, 2020, 48(9): 144-151.
[4] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[5] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[6] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[7] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[8] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[9] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[10] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[11] 靳宇, 李家峰, 何南, 文陈, 崔庆新, 白晶莹. 纳米多孔Pd-Cu/Pd-Ag催化剂的制备及其电催化性能[J]. 材料工程, 2020, 48(5): 62-67.
[12] 张小广, 邓慧宇, 陈庆春, 邦宇, 晏乐安, 那兵. 5-异氰酸酯异肽酰氯/ZnO/超支化聚酰胺纳滤膜的制备及性能[J]. 材料工程, 2020, 48(5): 91-99.
[13] 邓培淼, 宁洪龙, 谢伟广, 刘贤哲, 邓宇熹, 姚日晖, 彭俊彪. 氧化亚锡薄膜晶体管的研究进展[J]. 材料工程, 2020, 48(4): 83-88.
[14] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
[15] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn