Abstract:Metamaterials, man-made materials, enable us to design our own "atoms", and thereby to create materials with unprecedented effective properties that have not yet been found in nature. Smart metamaterial is one of those that is an intelligent perceptive to the changes from external environments and simultaneously having the capability to respond to thermal and mechanical stimuli. This paper can provide a review on these smart metamaterials in perspective of science, engineering and industrial products. We divide smart metamaterials according to what they are tuning into: optical, mechanical, thermal and coupled smart metamaterials. The rest of two techniques we addressed are modelling/simulation and fabrication/gene engineering. All of these types smart materials presented here are associated with at least five fundamental research: coupled mechanism of multi-physics fields, man-made design for atom/molecular, metamaterials coupled with natural materials, tunability of metamaterials, and mechanism of sensing metamaterials. Therefore, we give a systematic overview of various potential smart metamaterials together with the upcoming challenges in the intriguing and promising research field.
[1] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[2] VALENTINE J, ZHANG S, ZENTGRAF T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211):376-379.
[3] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[4] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6):435-441.
[5] GANSEL J K, MICHAEL T, RILL M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947):1513-1515.
[6] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[7] LIU R, JI C, MOCK J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912):366-369.
[8] GENOV D A, ZHANG S, ZHANG X. Mimicking celestial mechanics in metamaterials[J]. Nature Physics, 2009, 5(9):687-692.
[9] 彭茹雯,李涛,卢明辉,等. 浅说人工微结构材料与光和声的调控研究[J]. 物理,2012, 41(9):569-574. PENG R W, LI T, LU M H, et al. Artifical microstructured materials and manipulation of optical and acoustic waves[J]. Physics, 2012, 41(9):569-574.
[10] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of and μ[J]. Physics-Uspekhi, 1968, 10(4):509-514.
[11] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966.
[12] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science and Applications, 2014, 3(10):e218.
[13] GIOVAMPAOLA C D, ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 13(12):1115-1121.
[14] LIU X, ZHOU J, LITCHINITSER N, et al. Metamaterial all-optical switching based on resonance mode coupling in dielectric meta-atoms[J]. ArXiv Preprint, 2014, 1412:3338.
[15] WU H Y, ZHOU J, LAN C W, et al. Microwave memristive-like nonlinearity in a dielectric metamaterial[J]. Scientific Reports, 2014, 4:5499.
[16] ZHAO Q, ZHOU J, ZHANG F, et al. Mie resonance-based dielectric metamaterials[J], Materials Today, 2009, 12(12):60-69.
[17] SOUKOULIS C M, WEGENER M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5(9):523-530.
[18] KADIC M, BVCKMANN T, STENGER N, et al. On the practicability of pentamode mechanical metamaterials[J]. Applied Physics Letters, 2012, 100(19):191901.
[19] BVCKMANN T, THIEL M, KADIC M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J], Nature Communications 2014, 5:4130.
[20] BRÛLÉ S, JAVELAUD E H, ENOCH S, et al. Experiments on seismic metamaterials:Molding surface waves[J]. Physical Review Letters, 2014, 112(13):421-431.
[21] 阮居祺, 卢明辉, 陈延峰, 等. 基于弹性力学的超构材料[J]. 中国科学:技术科学, 2014, 44(12):1261-1270. RUAN J Q, LU M H, CHEN Y F, et al. Metamaterial based on elastic mechanics[J]. Science China:Technological Sciences, 2014, 44(12):1261-1270.
[22] GUENNEAU S, AMRA C, VEYNANTE D. Transformation thermodynamics:cloaking and concentrating heat flux[J]. Optics Express, 2012, 20(7):8207-8218.
[23] 沈翔瀛, 黄吉平.热超构材料的研究进展[J]. 物理, 2013, 42(3):170-180. SHEN X Y,HUANG J P. Research progress in thermal metamaterials[J]. Physics, 2013, 42(3):170-180.
[24] 徐象繁, 周俊, 杨诺, 等. 人工微结构材料与热的调控[J]. 中国科学:技术科学, 2015, 45(7):705-713. XU X F, ZHOU J, YANG N, et al. Artificial microstructure materials and heat flux manipulation[J]. Science China:Technological Sciences, 2015, 45(7):705-713.
[25] HAN T, BAI X, THONG J T, et al. Full control and manipulation of heat signatures:cloaking, camouflage and thermal metamaterials[J]. Advanced Materials, 2014, 26(11):1731-1734.
[26] CHEN P Y, ARGYROPOULOS C, ALÙ A. Broadening the cloaking bandwidth with non-foster metasurfaces[J]. Physical Review Letters, 2013, 111(23):233001.
[27] SATO K, NOMURA T, MATSUZAWA S, et al. Metamaterial techniques for automotive applications[C]//Hangzhou, China:PIERS proceedings, 2008:1122-1125.
[28] 刘若鹏,季春霖,赵治亚,等。超材料:重新塑造与重新思考[J].工程, 2015,1(2):179-184. LIU R P, JI C L, ZHAO Z Y, et al. Metamaterials:reshape and rethink[J]. Engineering, 2015, 1(2):179-184.
[29] 刘辉. 微结构材料的材料基因工程[R].南京:南京大学. LIU H. Gene-engineering of Micro-architected Materials[R]. Nanjing:Nanjing University.
[30] 周济. 超材料与自然材料融合的若干思考[J]. 新材料产业, 2014,(9):5-8. ZHOU J. Some reflections on the fusion of metamaterials and natural materials[J]. Advanced Materials Industry, 2014, (9):5-8.
[31] CUI T J, SMITH D R, LIU R. Metamaterials:Theory, Design, and Applications[M]. Boston, MA:Springer-Verlag, 2010.
[32] PITCHAPPA P, MANJAPPA M, HO C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4:541-547.
[33] GIESSEN H. Nanophotonics:grating games[J]. Nature Photonics, 2008, 2(6):335-337.
[34] NI X, WONG Z J, MREJEN M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254):1310-1314.
[35] HASAN S B, LEDERER F, ROCKSTUHL C. Nonlinear plasmonic antennas[J]. Materials Today, 2014, 17(10):478-485.
[36] WANG Z, DONG Z G, GU Y H, et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures[J]. Nature Communications, 2016, 7:11283.
[37] FANG M, HUANG Z, KOSCHNY T, et al. Electrodynamic modeling of quantum dot luminescence in plasmonic metamaterials[J]. ACS Photonics, 2016, 3(4):558-563.
[38] GUO R, RUSAK E, STAUDE I, et al. Multipolar coupling in hybrid metal-dielectric metasurfaces[J]. ACS Photonics, 2016, 3(3):349-353.
[39] PTASINSKI J N, KIM S W, PANG L, et al. Optical tuning of silicon photonic structures with nematic liquid crystal claddings[J]. Optics Letters, 2013, 38(12):2008-2010.
[40] SVIRKO Y P, ZHELUDEV N I. Polarization of Light in Nonlinear Optics[M]. New York:John Wiley & Sons, 1998.
[41] PREIS S, WIENS A, MAUNE H, et al. Reconfigurable package integrated 20 W RF power GaN HEMT with discrete thick-film MIM BST varactors[J]. Electronics Letters, 2016, 52(4):296-298.
[42] LI B, WANG F, ZHOU D, et al. Modes of surface premelting in colloidal crystals composed of attractive particles[J]. Nature, 2016, 531:485-488.
[43] CHEN W J, JIANG S J, CHEN X D, Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide[J]. Nature Communications, 2014, 5:5782.
[44] ZHANG X Q, XU Q, LI Q, et al. Asymmetric excitation of surface plasmons by dark mode coupling[J]. Science Advances, 2016, 2:e1501142.
[45] CAI W S. Optical Metamaterials:Fundamentals and Applications[M]. New York:Springer, 2010.
[46] MARTIN A, KADIC M, SCHITTNY R, et al. Phonon band structures of three-dimensional pentamode metamaterials[J]. Physical Review B, 2012, 86(15):4172-4181.
[47] LAYMAN C N, NAIFY C J, MARTIN T P, et al. Highly-anisotropic elements for acoustic pentamode applications[J]. Physical Review Letters, 2012, 111(2):1103-1114.
[48] FAN C Z, GAO Y, HUANG J P. Shaped graded materials with an apparent negative thermal conductivity[J]. Applied Physics Letters, 2008, 92:251907.
[49] NARAYANA S, SATO Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108:214303.
[50] SCHITTNY R, KADIC M, GUENNEAU S, et al. Experiments on transformation thermodynamics:molding the flow of heat[J]. Physical Review Letters, 2012, 110:195901.
[51] HAN T, BAI X, LIU D, et al. Manipulating steady heat conduction by sensu-shaped thermal metamaterials[J]. Scientific Reports, 2015, 5:10242.
[52] QIU C, GAO D, HAN T, et al. Experimental demonstration of a bilayer thermal cloak[J]. Physical Review Letters, 2014, 112:054302.
[53] NGUYEN D M, XU H, ZHANG Y, et al. Active thermal cloak[J]. Applied Physics Letters, 2015, 107(12):121901.
[54] PAINTER O, LEE R K, SCHERER A, et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 1999, 284(5421):1819-1821.
[55] NODA S, YOKOYAMA M, IMADA M, et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J]. Science, 2001, 293(5532):1123-1125.
[56] UNOLD H J, GOLLING M, MICHALZIK R, et al. Photonic crystal surface-emitting lasers:tailoring waveguiding for single-mode emission[J]. ECOC, 2001, 4:520-521.
[57] ENGHETA N, ZIOLKOWSKI R W. Metamaterials:Physics and Engineering Explorations[M]. Hoboken, NJ:Wiley, 2006.
[58] YI J, BUROKUR S N, DE LUSTRAC A. Conceptual design of a beam steering lens through transformation electromagnetics[J]. Optics Express, 2015, 23(10):12942-12951.
[59] BHATTACHARYYA S, SRIVASTAVA K V. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator[J]. Journal of Applied Physics, 2014, 115(6):064508.
[60] SHALAEV V M, KAWATA S. Nanophotonics with Surface Plasmons[M]. Boston:Elsevier, 2007.
[61] SCHOBER A M, IMESHEV G, FEJER M M. Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation[J]. Optics Letters, 2002, 27(13):1129-1131.
[62] MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials, 2014, 13(9):873-878.
[63] XIAO M, MA G, YANG Z, et al. Geometric phase and band inversion in periodic acoustic systems[J]. Nature Physics, 2015,11(3):240-244.
[64] CHENG B, CHEN Z G, ZHANG C L, et al. Three-dimensionality of band structure and a large residual quasiparticle population in Ba0.67K0.33Fe2As2 as revealed byc-axis polarized optical measurements[J]. Physical Review B, 2011, 83(14):1498-1504.
[65] XU Y, FEGADOLLI W S, GAN L, et al. Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice[J]. Nature Communications, 2016, 7:11319.
[66] LI J, CHEN S, YANG H, et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces[J]. Advanced Functional Materials, 2015, 25(5):704-710.
[67] 董国艳, 毕科, 周济. 具有零相移传输性质的超材料研究[J]. 中国科学, 2014, 44(4):406-416. DONG G Y, BI K, ZHOU J. Zero phase delay in metamaterials[J]. Scientia Sinica, 2014, 44(4):406-416.
[68] SUN J, LITCHINITSER N M, ZHOU J. Indefinite by nature:grom ultraviolet to terahertz[J]. ACS Photonics. 2014, 1(4):293-303.
[69] MA Y G, LAN L, JIANG W, et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity[J]. NPG Asia Materials, 2013, 5:e73.
[70] XU S, XU H, GAO H, et al. Broadband surface-wave transformation cloak[J]. PNAS, 2015, 112(25):7635-7638.
[71] 方振华, 罗春荣, 赵晓鹏. 银树枝左手超材料的反常古斯-汉欣位移[J]. 光学学报, 2015, 35(3):0316001. FANG Z H, LUO C R, ZHAO X P. Negative Goos-Hanchen shift of left-handed-metamaterials based on the silver dendritic structure[J]. Acta Optica Sinica, 2015, 35(3):0316001.
[72] 屈绍波,王甲富,马华,等. 超材料设计及其在隐身技术中的应用[M]. 北京:科学出版社, 2013. QU S B, WANG J F, MA H, et al. Metamaterial Design and Applications in Stealth Technology[M]. Beijing:Science Press, 2013.