Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (8): 77-84    DOI: 10.11868/j.issn.1001-4381.2016.08.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
热浸镀铝球墨铸铁失效机理研究
雍薇, 黄兴民, 张雷, 程乾, 戴光泽
西南交通大学 材料科学与工程学院, 成都 610031
Failure Mechanism of Hot Dip Aluminized Ductile Iron
YONG Wei, HUANG Xing-min, ZHANG Lei, CHENG Qian, DAI Guang-ze
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(7968 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用VK-9710型激光共聚焦显微镜对热浸镀铝球墨铸铁试样的三点弯曲失效过程进行原位观察,分析镀层和基体的裂纹萌生和扩展机理。结果表明:对于纯Al浸镀球墨铸铁,在拉应力作用下,铁铝合金镀层率先萌生裂纹,诱导临近基体中铁素体撕裂与石墨球剥离,裂纹近似垂直于拉应力方向并沿着临近石墨球最短途径扩展;压应力导致表面纯Al层剥离和铁铝合金层破碎,镀层失效对球墨铸铁基体基本无影响。对于Al-3.7Si-1.0RE浸镀球墨铸铁,拉应力作用下的失效机理与纯Al浸镀相似;压应力作用下纯Al层和铁铝合金层与基体脱开,表现为铁素体基体失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雍薇
黄兴民
张雷
程乾
戴光泽
关键词 球墨铸铁热浸镀铝原位观察失效机理    
Abstract:Using laser scanning confocal microscope, failure process of aluminized ductile iron samples were in-situ observed during three-point bending test, while crack initiation and propagation mechanism were analyzed in the area of coating and matrix. The results show that for hot-dipped samples in Al, cracks mainly initiate in the Fe-Al alloy coating under tensile stress, then induce the tearing of ferrite and the peeling of graphite in the adjacent matrix. Thereby cracks spread to the inner matrix in shortest route between graphite and ferrite, in the direction nearly vertical to tensile stress. In case of compression stress, aluminized alloy layer is crushed and aluminum layer is peeled off,which having little influence on the failure of matrix. For hot-dipped samples in Al-3.7Si-1.0RE, failure mechanism under tensile stress is similar to that of hot-dipped samples in Al; under compression stress, aluminum and Fe-Al alloy coatings are disengaged from matrix, exhibits failure occurring in the ferrite matrix.
Key wordsductile iron    hot-dip aluminizing    in-situ observation    failure mechanism
收稿日期: 2014-11-04      出版日期: 2016-08-23
中图分类号:  TG174.443  
通讯作者: 黄兴民(1980-),男,副教授,博士,主要从事高速列车关键零部件材料研究,联系地址:西南交通大学九里校区材料学院(610031),xmhuang@home.swjtu.edu.cn     E-mail: xmhuang@home.swjtu.edu.cn
引用本文:   
雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
YONG Wei, HUANG Xing-min, ZHANG Lei, CHENG Qian, DAI Guang-ze. Failure Mechanism of Hot Dip Aluminized Ductile Iron. Journal of Materials Engineering, 2016, 44(8): 77-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.08.013      或      http://jme.biam.ac.cn/CN/Y2016/V44/I8/77
[1] 王德庆, 于金龙, 段旭东. 钢铁表面热浸镀铝技术回顾[J]. 大连铁道学院学报,2003,24(3):77-83. WANG D Q, YU J L, DUAN X D. A review of hot dip aluminizing on steels[J]. Journal of Dalian Railway Institute, 2003, 24(3):77-83.
[2] 刘洪福, 牛宗伟, 赵东山. 热浸镀铝技术研究进展与展望[J]. 全面腐蚀控制, 2012, 25(11):11-14. LIU H F, NIU Z W, ZHAO D S. Progress and prospect on hot-dip aluminum researching[J]. Total Corrosion Control,2012,25(11):11-14.
[3] 张伟, 刘爱萍, 文九巴. 镀铝温度对渗铝层/基体界面空洞生长动力学的影响[J]. 材料热处理学报,2012,33(4):127-131. ZHANG W, LIU A P, WEN J B. Effects of aluminizing temperature on the growth kinetics of voids along interface between aluminized layer and steel substrate[J]. Transactions of Materials and Heat Treatment,2012,33(4):127-131.
[4] 孙伟, 蔡启舟, 罗强, 等. 扩散退火对热浸镀铝层组织与抗高温氧化性的影响[J]. 材料热处理学报,2011,32(1):114-120. SUN W, CAI Q Z, LUO Q, et al. Effects of diffusion annealing on microstructure and anti-oxidation property of hot-dipped aluminum coating on 45 steel[J]. Transactions of Materials and Heat Treatment,2011,32(1):114-120.
[5] 张伟, 范志康, 郭献军. 热浸镀铝钢渗铝层的微观组织及其形成机理研究现状[J]. 机械工程材料,2006,30(1):9-11. ZHANG W, FAN Z K, GUO X J. Summary of coating formation mechanism and microstructure during hot dip aluminizing on steel[J]. Materials for Mechanical Engineering,2006,30(1):9-11.
[6] WANG S H, SONG J H, KIM Y S. Effects of carbon content of carbon steel on its dissolution into a molten aluminum alloy[J]. Materials Science and Engineering:A,2005,390(1-2):437-443.
[7] SASAKI T, YAKOU T, MOCHIDUKI K, et al. Effects of carbon contents in steels on alloy layer growth during hot-dip aluminum coating[J]. ISIJ International,2005,45(12):1887-1892.
[8] CHENG W J, WANG C J. Growth of intermetallic layer in the aluminide mild steel during hot-dipping[J]. Surface and Coatings Technology,2009,204(6):824-828.
[9] CHENG W J, WANG C J. Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel[J]. Intermetallics,2011,19(10):1455-1460.
[10] 宋世崑, 刘顺华,高洪吾,等. 热浸镀铝钢丝组织和性能的研究[J]. 机械工程材料,2002,26(2):17-19. SONG S K, LIU S H, GAO H W, et al. Microstructure and properties of hot-dip aluminized steel wire[J]. Materials for Mechanical Engineering,2002,26(2):17-19.
[11] 郭军, 吴元康. 热浸镀铝低碳钢的力学性能和耐腐蚀性能研究[J]. 机械工程材料,1995,19(5):20-22. GUO J, WU Y K. Investigation on mechanical properties and corrosion resistance of aluminum coated low carbon steels[J]. Materials for Mechanical Engineering,1995,19(5):20-22.
[12] 程乾, 黄兴民, 戴光泽. 热浸镀铝球墨铸铁的耐蚀性能和冲击韧性[J]. 材料热处理学报,2014,35(2):157-163. CHENG Q, HUANG X M, DAI G Z. Corrosion resistance and impact toughness of hot-dip aluminized ductile iron[J].Transactions of Materials and Heat Treatment,2014,35(2):157-163.
[13] 钱庆生, 李海, 王芝秀,等. HP40Nb钢热浸镀Al-Si高温氧化行为及组织研究[J]. 材料工程,2011,(8):52-57. QIAN Q S, LI H, WANG Z X, et al. Microstructure and oxidation resistance behavior of hot dip aluminized coating on HP40Nb steel[J]. Journal of Materials Engineering,2011,(8):52-57.
[14] 张伟, 范志康, 郭献军,等. 稀土对热浸镀铝钢Al2O3/渗铝层界面空洞生长的影响[J].航空材料学报,2006,26(2):16-19. ZHANG W, FAN Z K, GUO X J, et al. Effects of rare earth on growth of voids along interface between Al2O3 and aluminizing layer[J]. Journal of Aeronautical Materials,2006,26(2):16-19.
[15] 张伟, 陈冬梅. 热浸镀镧铝钢的高温耐热行为研究[J].材料工程,2008,(7):51-54. ZHANG W,CHEN D M. Heat resistance behavior of hot dip aluminized steel with rare earths[J]. Journal of Materials Engineering,2008,(7):51-54.
[16] WANG M, WANG J, FENG H, et al. In-situ observation of fracture behavior of Sn-3.0Ag-0.5Cu lead-free solder during three-point bending tests in ESEM[J]. Materials Science and Engineering:A,2012,558:649-655.
[17] 刘继雄, 赵爱民, 江海涛, 等. 钛钢复合板弯曲过程的扫描电镜原位观察[J]. 北京科技大学学报,2012,34(4):424-429. LIU J X, ZHAO A M, JIANG H T, et al. In-situ SEM observation on titanium clad steel plates in the bending process[J]. Journal of University of Science and Technology Beijing,2012,34(4):424-429.
[18] 王豫, 马玉明. 钢和铸铁的热浸渗铝研究[J]. 华东冶金学院学报,1990,7(3):38-47.
[19] 刘邦津. 钢材的热浸镀铝[M]. 北京:冶金工业出版社,1995.
[20] 胡增智. 铁铝金属间化合物组织和性能的研究[D]. 哈尔滨:哈尔滨工业大学,2010.
[21] 金属材料物理性能手册[M]. 北京:机械工业出版社,2011.
[22] 张永刚. 金属间化合物结构材料[M]. 北京:国防工业出版社, 2001.860-865.
[1] 卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
[2] 周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
[3] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[4] 陈亚军, 王先超, 王付胜, 周剑, 吴悦雷. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9): 136-142.
[5] 陈亚军, 王先超, 王付胜, 刘波. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8): 68-75.
[6] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[7] 付志凯, 王文健, 丁昊昊, 顾凯凯, 刘启跃. 等温淬火球墨铸铁滚动磨损与损伤性能[J]. 材料工程, 2015, 43(5): 75-80.
[8] 程秀, 胡树兵, 宋武林, 李振. 球墨铸铁的等离子束表面强化研究[J]. 材料工程, 2014, 0(1): 12-18.
[9] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[10] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[11] 陈江, 黄兴民, 高杰维, 董海, 戴光泽. 低镍球墨铸铁低温冲击性能及断裂机理研究[J]. 材料工程, 2012, 0(12): 33-38.
[12] 钱庆生, 李海, 王芝秀, 王秀丽, 史志欣. HP40Nb钢热浸镀Al-Si高温氧化行为及组织研究[J]. 材料工程, 2011, 0(8): 52-57.
[13] 朴钟宇, 徐滨士, 王海斗, 濮春欢. 等离子喷涂铁基涂层的接触疲劳失效机理研究[J]. 材料工程, 2009, 0(11): 69-73.
[14] 张伟, 陈冬梅. 热浸镀镧铝钢的高温耐热行为研究[J]. 材料工程, 2008, 0(7): 51-54.
[15] 江海涛, 米振莉, 唐荻, 王海全, 代永娟. TWIP钢拉伸变形过程中微观组织的原位观察[J]. 材料工程, 2008, 0(1): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn