Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (9): 16-23    DOI: 10.11868/j.issn.1001-4381.2016.09.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
GH984G18合金热加工图及再结晶图研究
谢碧君, 郭逸丰, 徐斌, 孙明月, 李殿中
中国科学院 金属研究所, 沈阳 110016
Processing Map and Recrystallization Diagram for GH984G18 Alloy
XIE Bi-jun, GUO Yi-feng, XU Bin, SUN Ming-yue, LI Dian-zhong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(28574 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 应用Gleeble3800热模拟试验机对GH984G18合金进行热压缩实验,以实验获得的应力-应变曲线为基础,根据动态材料模型建立该合金不同应变时的热加工图,利用热加工图确定了热加工工艺窗口,并分析了温度和变形量对实验合金动态再结晶的影响。结果表明:应变较小(ε≤0.2)时,可优先选择的变形温度为1030~1090℃,应变速率为0.01~0.18s-1;随应变增加(ε≥0.3),最佳热变形温度范围移至高温区间1180~1200℃,最佳应变速率范围大致为0.056~0.25s-1;当应变速率为1s-1时,温度小于900℃不能引起动态再结晶,仅使得晶粒发生动态回复;当变形温度和应变量分别达到1000℃和30%时,发生部分动态再结晶;当变形温度为1000℃,应变量为60%时,发生完全动态再结晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢碧君
郭逸丰
徐斌
孙明月
李殿中
关键词 GH984G18合金热压缩热加工图再结晶图    
Abstract:The thermal compression experiment of GH984G18 alloy was carried out using thermal-mechanical testing machines Gleeble3800. Based on the stress-strain curves obtained from the experiments, the processing maps of the GH984G18 alloy were established according to the dynamic materials model (DMM), then the hot working process window of alloy was built, and the influence of temperature and strain on the dynamic recrystallization of the experimental alloy was also analyzed. The results show that when the strain is small(ε≤0.2), the optimum deformation temperature is in the temperature range of 1030-1090℃ and strain rate range of 0.01-0.18s-1; with the increase of strain(ε≥0.3), the optimum deformation temperature moves to the high temperature range of 1180-1200℃ and strain rate range of 0.056-0.25s-1; and at the strain rate of 1s-1, dynamic recrystallization does not occur and dynamic recovery dominates when the temperature is lower than 900℃; and partial dynamic recrystallization occurs at the temperature of 1000℃ and the strain of 30%; and then the complete dynamic recrystallization occurs at the temperature of 1000℃ and strain of 60%.
Key wordsGH984G18 alloy    thermal compression    processing map    recrystallization diagram
收稿日期: 2015-09-23      出版日期: 2016-09-27
中图分类号:  TG113.26  
通讯作者: 孙明月(1980-),男,研究员,主要从事超高温成形方面的研究工作,联系地址:辽宁省沈阳市沈河区文化路72号中国科学院金属研究所沈阳材料科学国家(联合)实验室科技楼303室(110016),E-mail:mysun@imr.ac.cn     E-mail: mysun@imr.ac.cn
引用本文:   
谢碧君, 郭逸丰, 徐斌, 孙明月, 李殿中. GH984G18合金热加工图及再结晶图研究[J]. 材料工程, 2016, 44(9): 16-23.
XIE Bi-jun, GUO Yi-feng, XU Bin, SUN Ming-yue, LI Dian-zhong. Processing Map and Recrystallization Diagram for GH984G18 Alloy. Journal of Materials Engineering, 2016, 44(9): 16-23.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.003      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/16
[1] EVANS N D,MAZIASZ P J,SWINDEMAN R W,et al.Microstructure and phase stability in INCONEL alloy 740 during creep[J].Scripta Materialia,2004,51(6):503-507.
[2] ROSLER J,GOTTING M,GENOVESE D D,et al.Wrought Ni-base superalloys for steam turbine applications beyond 700℃[J].Advanced Engineering Materials,2003,5(7):469-483.
[3] VISWANATHAN V,PURGERT R,RAWLS P.Coal-fired power materials[J].Advanced Materials&Processes,2008,166(8):47-49.
[4] TOKAIRIN T,DAHL K V,DANIELSEN H K,et al.Investigation on long-term creep rupture properties and microstructure stability of Fe-Ni based alloy Ni-23Cr-7W at 700℃[J].Materials Science and Engineering:A,2013,565:285-291.
[5] 郭建亭,杜秀魁.一种性能优异的过热器管材用高温合金GH2984[J].金属学报,2005,41(11):1221-1227.GUO J T,DU X K.A superheater tube superalloy GH2984 with excellent properties[J].Acta Metallurgica Sinica,2005,41(11):1221-1227.
[6] KRISHNA R,HAINSWORTH S V,GILL S P A,et al.Topologically close-packed μ phase precipitation in creep-exposed Inconel 617 alloy[J].Metallurgical and Materials Transactions A,2013,44(3):1419-1429.
[7] SHINGLEDECKER J P,EVANS N D,PHARR G M.Influences of composition and grain size on creep-rupture behavior of Inconel® alloy 740[J].Materials Science and Engineering:A,2013,578:277-286.
[8] SHINGLEDECKER J P,PHARR G M.Testing and analysis of full-scale creep-rupture experiments on Inconel alloy 740 cold-formed tubing[J].Journal of Materials Engineering and Performance,2013,22(2):454-462.
[9] 谭梅林,王常帅,郭永安,等.Ti/Al比对GH984G合金长期时效过程中γ'沉淀相粗化行为及拉伸性能的影响[J].金属学报,2014,50(10):1260-1268.TAN M L,WANG C S,GUO Y A,et,al.Influence of Ti/Al ratios on γ'coarsening behavior and tensile properties of GH984G alloy during long-term thermal exposure[J].Acta Metallurgica Sinica,2014,50(10):1260-1268.
[10] PRASAD Y V R K,GEGEL H L,DORAIVELU S M,et al.Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical and Materials Transactions A,1984,15(10):1883-1892.
[11] 李润霞,张磊,刘兰吉,等.Al-17.5Si-4Cu-0.5Mg合金热变形行为及其加工图[J].航空材料学报,2015,35(1):25-32.LI R X,ZHANG L,LIU L J,et al.Hot deformation behavior and processing maps of Al-17.5Si-4Cu-0.5Mg alloys[J].Journal of Aeronautical Materials,2015,35(1):25-32.
[12] 俞秋景,张伟红,于连旭,等.铸态Inconel 625合金热加工图的建立及热变形机制分析[J].材料工程,2014,(1):30-34.YU Q J,ZHANG W H,YU L X,et al.Development of thermal processing map and analysis of hot deformation mechanism of cast alloy Inconel 625[J].Journal of Materials Engineering,2014,(1):30-34.
[13] 曾卫东,周义刚,周军,等.加工图理论研究进展[J].稀有金属材料与工程,2006,35(5):673-677.ZENG W D,ZHOU Y G,ZHOU J,et al.Recent development of processing map theory[J].Rare Metal Materials and Engineering,2006,35(5):673-677.
[14] BALASUBRAHMANYAM V V,PRASAD Y.Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging[J].Materials Science and Engineering:A,2002,336(1-2):150-158.
[15] SUN M Y,HAO L H,LI S J,et al.Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels[J].Journal of Nuclear Materials,2011,418(1-3):269-280.
[1] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[2] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[3] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[4] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[5] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[6] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[7] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[8] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[9] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[10] 刘延辉, 姚泽坤, 宁永权, 郭鸿镇. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, 0(7): 16-21.
[11] 俞秋景, 张伟红, 于连旭, 刘芳, 孙文儒, 胡壮麒. 铸态Inconel 625合金热加工图的建立及热变形机制分析[J]. 材料工程, 2014, 0(1): 30-34.
[12] 马龙腾, 王立民, 胡劲, 刘正东, 张秀丽. AISI403马氏体不锈钢的热变形特性研究[J]. 材料工程, 2013, 0(5): 38-43.
[13] 李波, 潘清林, 张志野, 李晨, 尹志民. 含钪Al-Zn-Mg合金的热变形行为和显微组织[J]. 材料工程, 2013, 0(11): 6-11.
[14] 陶乐晓, 臧金鑫, 张坤, 陈慧琴. 新型高强Al-Zn-Mg-Cu合金的热变形行为和热加工图[J]. 材料工程, 2013, 0(1): 16-20.
[15] 付明杰, 静永娟, 张继. 挤压开坯γ-TiAl合金的热变形行为研究[J]. 材料工程, 2011, 0(5): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn