Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (9): 24-31    DOI: 10.11868/j.issn.1001-4381.2016.09.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
热处理工艺对新型轻质奥氏体耐磨钢的组织与力学性能的影响
彭世广, 宋仁伯, 王威, 谭志东, 蔡长宏, 王林炜杰
北京科技大学 材料科学与工程学院, 北京 100083
Effect of Heat Treatments on Microstructure and Mechanical Properties of Novel Light-mass Austenitic Wear-resistant Steel
PENG Shi-guang, SONG Ren-bo, WANG Wei, TAN Zhi-dong, CAI Chang-hong, WANG Lin-weijie
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(27684 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以新型轻质高锰、高铝的奥氏体耐磨钢为研究对象,利用XRD,OM,SEM,EDS观察显微组织和析出物,研究不同的热处理工艺对新型钢种的组织与力学性能影响。结果表明:该新型轻质奥氏体耐磨钢的最佳优化热处理工艺为1050℃保温1h水韧,550℃时效2h,空冷。在最佳热处理工艺条件下奥氏体基体内弥散析出细小的钙钛矿结构(Fe,Mn)3AlC的κ-碳化物颗粒,不仅强化了奥氏体基体,其力学性能也得到明显改善;最优工艺处理后实验钢的硬度、强度、冲击韧度达到了最佳匹配,其抗拉强度为825MPa,屈服强度为574MPa,冲击韧度值为156J/cm2(V型缺口),硬度为271HB;与只进行水韧处理相比实验钢的屈服强度提高40.0%,硬度提高32.2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭世广
宋仁伯
王威
谭志东
蔡长宏
王林炜杰
关键词 轻质奥氏体耐磨钢弥散析出κ-碳化物    
Abstract:A novel light-mass high Mn-Al austenitic wear-resistant steel was selected as the research object. The microstructure and precipitates were examined by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Effect of heat treatments on microstructure and mechanical properties of the novel steel was studied. Results show that the optimum heat treatment is water toughening at 1050℃ for 1h and aging at 550℃ for 2h, air cooling. Under the condition of the optimum heat treatment, fine (Fe,Mn)3AlC carbides which have a perovskite structure are found to precipitate within the austenite matrix. The fine carbides not only strengthen the austenitic matrix, but its mechanical properties are also improved significantly. The hardness, strength, impact toughness of the experiment steel under the optimal heat treatment reach the best match with a tensile strength of 825MPa, a yield strength of 574MPa, a impact toughness values (V-notch) of 156J/cm2, a surface hardness of 271HB. Compared with that of the conventional treatment, the yield strength and hardness increase by 40.0% and 32.2%, respectively.
Key wordslight-mass    austenite    wear-resistant steel    disperse precipitation    κ-carbide
收稿日期: 2015-05-20      出版日期: 2016-09-27
中图分类号:  TG142.25  
通讯作者: 宋仁伯(1970-),男,博士,教授,从事金属材料组织和性能控制研究,联系地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院材料加工系409室(100083),E-mail:songrb@mater.ustb.edu.cn     E-mail: songrb@mater.ustb.edu.cn
引用本文:   
彭世广, 宋仁伯, 王威, 谭志东, 蔡长宏, 王林炜杰. 热处理工艺对新型轻质奥氏体耐磨钢的组织与力学性能的影响[J]. 材料工程, 2016, 44(9): 24-31.
PENG Shi-guang, SONG Ren-bo, WANG Wei, TAN Zhi-dong, CAI Chang-hong, WANG Lin-weijie. Effect of Heat Treatments on Microstructure and Mechanical Properties of Novel Light-mass Austenitic Wear-resistant Steel. Journal of Materials Engineering, 2016, 44(9): 24-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.004      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/24
[1] CHEN P C,CHAO C G,LIU T F.A novel high-strength,high-ductility and high-corrosion-resistance FeAlMnC low-density alloy[J].Scripta Materialia,2013,68(6):380-383.
[2] SEOL J,RAABE D,CHOI P,et al.Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography[J].Scripta Materialia,2013,68(6):348-353.
[3] SOHN S S,LEE B J,LEE S,et al.Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel[J].Acta Materialia,2013,61(13):5050-5066.
[4] ZHANG L F,SONG R B,ZHAO C,et al.Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel[J].Materials Science and Engineering:A,2015,640:225-234.
[5] WANG T P,KAO F H,WANG S H,et al.Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel[J].Materials Letters,2011,65(2):396-399.
[6] ZHAO C,SONG R B,ZHANG L F,et al.Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel[J].Materials&Design,2016,91:348-360.
[7] RAABE D,SPRINGER H,GUTIERREZ-URRUTIA I,et al.Alloy design,combinatorial synthesis,and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels[J].JOM,2014,66(9):1845-1856.
[8] SOHN S S,LEE B J,LEE S,et al.Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel[J].Acta Materialia,2013,61(15):5626-5635.
[9] GEORG F,UDO B.Development and characterization of high strength impact resistant Fe-Mn-(Al-,Si) TRIP/TWIP steels[J].Steel Research International,2006,77(9-10):627-633.
[10] KALASHNIKOV I S,ACSELRAD O,SHALKEVICH A,et al.Heat treatment and thermal stability of FeMnAlC alloys[J].Journal of Materials Processing Technology,2003,136(1-3):72-79.
[11] DING H,TANG Z Y,LI W,et al.Microstructures and mechanical properties of Fe-Mn-(Al,Si) TRIP/TWIP steels[J].Journal of Iron and Steel Research,International,2006,13(6):66-70.
[12] YOO J D,HWANG S W,PARK K T.Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel[J].Materials Science and Engineering:A,2009,508(1-2):234-240.
[13] 杨富强,宋仁伯,李亚萍,等.退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响[J].材料研究学报,2015,29(2):108-114.YANG F Q,SONG R B,LI Y P,et al.Effect of annealing temperature on properties of cold rolled Fe-Mn-Al-C low density steel[J].Chinese Journal of Materials Research,2015,29(2):108-114.
[14] 杨富强,宋仁伯,孙挺,等.Fe-Mn-Al轻质高强钢组织和力学性能研究[J].金属学报.2014,50(8):897-904.YANG F Q,SONG R B,SUN T,et al.Microstructure and mechanical properties of Fe-Mn-Al light-weight high strength steel[J].Acta Metallurgica Sinica,2014,50(8):897-904.
[15] KIM J,ESTRIN Y,COOMAN B C.Application of a dislocation density-based constitutive model to Al-alloyed TWIP steel[J].Metallurgical and Materials Transactions A,2013,44(9):4168-4182.
[16] KIM H,SUH D W,KIM N J.Fe-Al-Mn-C lightweight structural alloys:a review on the microstructures and mechanical properties[J].Science and Technology of Advanced Materials,2013,14(1):14205-14215.
[17] JEONG J Y,LEE C Y,PARK I J,et al.Isothermal precipitation behavior of κ-carbide in the Fe-9Mn-6Al-0.15C lightweight steel with a multiphase microstructure[J].Journal of Alloys and Compounds,2013,574:299-304.
[18] LU W J,ZHANG X F,QIN R S.κ-carbide hardening in a low-density high-Al high-Mn multiphase steel[J].Materials Letters,2015,138:96-99.
[19] KALASHNIKOV I,SHALKEVICH A,ACSELRAD O,et al.Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system[J].Journal of Materials Engineering and Performance,2000,9(6):597-602.
[20] ZHU S M,TJONG S C.Creep and rupture properties of an austenitic Fe-30Mn-9Al-1C alloy[J].Metallurgical and Materials Transactions A,1998,29(1):299-306.
[21] HOSODA H,MIYAZAKI S,MISHIMA Y.Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams[J].Journal of Phase Equilibria,2001,22(4):394-399.
[22] KIMURA Y,HAYASHI K,HANDA K,et al.Microstructural control for strengthening the γ-Fe/E21-(Fe,Mn)3AlCx alloys[J].Materials Science and Engineering:A,2002,329-331:680-685.
[23] HAN K H,YOON J C,CHOO W K.TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys[J].Scripta Metallurgica,1986,20(1):33-36.
[1] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[2] 蔡欣, 孙明月, 王卫, 康秀红, 李殿中. 8Cr4Mo4Ni4V航空轴承钢高温奥氏体晶粒长大的数学模型[J]. 材料工程, 2018, 46(9): 131-137.
[3] 许立雄, 武会宾, 牟丹. 两相区淬火对7Ni钢微观组织和力学性能的影响[J]. 材料工程, 2018, 46(8): 113-119.
[4] 李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018, 46(11): 148-154.
[5] 孙世清. 无碳化物贝氏体钢渗碳后的深冷处理[J]. 材料工程, 2017, 45(5): 94-99.
[6] 陈连生, 胡宝佳, 宋进英, 张健杨, 郑小平, 魏英立, 田亚强. 初始组织对低碳钢IQ&P工艺残留奥氏体及力学性能的影响[J]. 材料工程, 2017, 45(2): 96-101.
[7] 谭毅, 秦世强, 石爽, 姜大川, 李鹏廷, 李佳艳. 太阳能级硅中轻质元素(C,N,O)研究进展[J]. 材料工程, 2017, 45(2): 112-118.
[8] 麻晗, 廖舒纶. 高碳钢奥氏体晶粒长大的预测[J]. 材料工程, 2017, 45(1): 78-84.
[9] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[10] 王永强, 李娜, 杨滨, 孙立, 林苏华. 核电管道不锈钢中σ相的退火消除及脆性恢复[J]. 材料工程, 2016, 44(5): 29-36.
[11] 张敏, 刘明志, 张明, 李继红. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J]. 材料工程, 2016, 44(3): 40-45.
[12] 王婵媛, 王希晰, 曹茂盛. 轻质石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2016, 44(10): 109-118.
[13] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[14] 乔志霞, 李连进, 宁保群. 奥氏体化条件对675装甲钢中马氏体相变的影响[J]. 材料工程, 2014, 0(7): 5-9.
[15] 陈连生, 赵远, 田亚强, 宋进英, 魏英立, 杨栋. 低碳硅锰系Q&P钢增塑机制及组织性能[J]. 材料工程, 2014, 0(6): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn