Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (9): 58-62    DOI: 10.11868/j.issn.1001-4381.2016.09.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Inconel 740H合金750℃长期时效后的组织稳定性
党莹樱(), 赵新宝, 尹宏飞, 鲁金涛, 袁勇, 杨珍, 谷月峰
西安热工研究院有限公司, 西安 710032
Microstructure Stability of Inconel 740H Alloy After Long Term Exposure at 750℃
Ying-ying DANG(), Xin-bao ZHAO, Hong-fei YIN, Jin-tao LU, Yong YUAN, Zhen YANG, Yue-feng GU
Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710032, China
全文: PDF(14587 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对Inconel 740H合金管材在750℃进行500~3000h的无应力时效实验,采用热力学模拟,OM,FEG-SEM,显微硬度测定等方法研究了合金微观组织及显微硬度的变化趋势。结果表明:供货态(固溶处理)管材的合金成分及拉伸性能等均满足ASME要求,管材合格;长期时效后合金的主要析出相为γ'及M23C6,无η,σ等有害相析出。随着时效时间的延长,γ'粒子的粗化速率较快,其规律符合LSW熟化理论,M23C6相尺寸变化不明显;合金的显微硬度呈现先上升后下降的变化趋势,但整体波动较小。长期时效后合金组织及显微硬度的变化表明Inconel 740H在750℃/3000h条件下的组织稳定性较好,可用于进一步进行持久等长时力学性能的检验。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党莹樱
赵新宝
尹宏飞
鲁金涛
袁勇
杨珍
谷月峰
关键词 Inconel 740H长期时效组织稳定性显微硬度    
Abstract

Unstressed exposure tests of Inconel 740H alloy tube were carried out at 750℃ for 500-3000h. The microstructure evolution and microhardness were studied by means of thermodynamic simulation, OM, FEG-SEM and microhardness testing. The results show that the tube is qualified if both chemical composition and tensile properties of the as-received alloy meet the corresponding requirements of ASME. After long term exposure, the main precipitates are γ' and M23C6, and no η and σ phase. With the prolonging of exposure time, the coarsening of γ' becomes faster and the law of relationship between the radius of γ' and time accords with LSW Ostwald ripening law; meanwhile, the change in size of M23C6 is not so obvious. During the whole process, microhardness increases firstly and then decreases, but the fluctuation is slight. The changes of microstructure and hardness indicate that, after long time exposure, the domestic Inconel 740H has good stability and can be used for further carrying out the investigation on the mechanical property of creep-rupture.

Key wordsInconel 740H    long term exposure    microstructure stability    microhardness
收稿日期: 2014-12-26      出版日期: 2016-09-27
中图分类号:  TG132  
基金资助:国家自然科学基金资助项目(51401164)
通讯作者: 党莹樱     E-mail: dyy1630@126.com
作者简介: 党莹樱(1986-), 女, 工学博士, 主要从事高温材料组织与寿命方面的研究工作, 联系地址:陕西省西安市兴庆路136号西安热工研究院有限公司工程研究中心(710032), E-mail:dyy1630@126.com
引用本文:   
党莹樱, 赵新宝, 尹宏飞, 鲁金涛, 袁勇, 杨珍, 谷月峰. Inconel 740H合金750℃长期时效后的组织稳定性[J]. 材料工程, 2016, 44(9): 58-62.
Ying-ying DANG, Xin-bao ZHAO, Hong-fei YIN, Jin-tao LU, Yong YUAN, Zhen YANG, Yue-feng GU. Microstructure Stability of Inconel 740H Alloy After Long Term Exposure at 750℃. Journal of Materials Engineering, 2016, 44(9): 58-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.009      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/58
Alloy C Si Mn P S Cr Co Al Ti Nb Mo Fe Cu Ni
Tested 0.030 0.05 0.02 0.005 0.002 24.50 20.35 1.47 1.27 1.26 0.30 0.10 0.02 Bal
ASME 0.005 1.00 1.00 0.030 0.030 23.50 15.00 0.20 0.50 0.50 2.00 3.00 0.50 Bal
0.080 Max Max Max Max 25.50 22.00 2.00 2.50 2.50 Max Max Max
Table 1  In 740H合金化学成分(质量分数/%)
Alloy Tensile property
σb/MPa σ0.2/MPa Elongation/% Reduction of area/%
Tested 777.5 340.0 65.8 75.0
Table 2  固溶态In 740H合金的室温拉伸性能
Fig.1  In 740H合金平衡态组织
Phase Al Co Cr Cu Fe Mn Mo Nb Si Ti C Ni
γ 1.55 21.62 30.84 0.02 0.12 0.02 0.20 0.12 0.11 0.26 0.01 Bal
γ′ 11.59 7.06 1.83 0.02 0.01 0.00 0.01 3.68 0.04 8.30 Bal
M23C6 - 3.32 69.33 - 0.01 0.00 4.09 0.00 - 0.00 20.69 Bal
MC - - 0.12 - - - 0.02 42.94 - 9.18 47.74 -
Table 3  In 740H合金800℃平衡状态下各相成分(原子分数/%)
Fig.2  In 740H管材经标准热处理后的显微组织(a)OM;(b)晶界M23C6SEM照片;(c)晶内γ′SEM照片
Fig.3  750℃长期时效后γ′相的二次电子像(a)500h;(b)935h;(c)3000h
Fig.4  In 740H合金750℃长期时效过程中γ′的长大规律
Fig.5  750℃长期时效后晶界M23C6相的二次电子像(a)500h;(b)935h;(c)3000h;(d)图(a)中A点的EDS谱图
Fig.6  In 740H合金显微硬度随时效时间的变化趋势
1 VISWANATHAN R , HENRY J F , TANZOSH J , et al. US program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005, 14 (3): 281- 292.
doi: 10.1361/10599490524039
2 FUKUDA M, SAITO E, SEMBA H, et al.Advanced USC technology development in Japan[A].Proceedings of 6th International Conference Advances in Materials Technology for Fossil Power Plants[C].Sante Fe, United States:ASM International, 2011.325-341.
3 ZHAO S , XIE X , SMITH G D , et al. Microstructural stability and mechanical properties of a new nickel-based superalloy[J]. Materials Science and Engineering:A, 2003, 355 (1): 96- 105.
4 VISWANATHAN R, COLEMAN K, SHINGLEDECKER J, et al.Boiler materials for ultra supercritical coal power plants[R].United States:Materialsence, 2006.
5 PIKE L M, WEATHERILL A E.HAYNES® 282TM alloy:a new wrought superalloy designed for improved creep strength and fabricability[A].Proceedings of ASME Turbo Expo 2006:Power for Land, Sea, and Air[C].Barcelona, Spain:American Society of Mechanical Engineers, 2006.1031-1039.
6 赵双群, 谢锡善, 董建新.700℃超超临界燃煤电站用镍基高温合金Inconel 740/740H的组织与性能[A].第九届电站金属材料学术年会论文集[C].上海:中国动力工程学会, 2011.278-288.
6 ZHAO S Q, XIE X S, DONG J X.Microstructure and properties of nickel based Inconel 740/740H for 700℃ ultra-supercritical coal power plants[A].Proceedings of the 9th Annual Conference on Power Metal Materials[C].Shanghai:CSPE, 2011.278-288.
7 CHONG Y , LIU Z D . Microstructure evolution and mechanical properties of Inconel 740H during aging at 750℃[J]. Materials Science and Engineering:A, 2014, 589, 153- 164.
doi: 10.1016/j.msea.2013.09.076
8 符锐, 林富生, 赵双群, 等. Inconel 740H主要强化元素对热力学平衡相析出行为的影响[J]. 动力工程学报, 2013, 33 (5): 405- 412.
8 FU R , LIN F S , ZHAO S Q , et al. Influence of strengthening elements on precipitation of thermodynamic equilibrium phases in Inconel alloy 740H[J]. Journal of Chinese Society of Power Engineering, 2013, 33 (5): 405- 412.
9 WANG W Z , HONG H U , KIM I S , et al. Influence of γ'and grain boundary carbide on tensile fracture behaviors of Nimonic 263[J]. Materials Science and Engineering:A, 2009, 523 (1): 242- 245.
10 肖旋, 赵海强, 王常帅, 等. B和P对GH984合金组织和力学性能的影响[J]. 金属学报, 2013, 49 (4): 421- 427.
doi: 10.3724/SP.J.1037.2013.00002
10 XIAO X , ZHAO H Q , WANG C S , et al. Effects of B and P on microstructure and mechanical properties of GH984 alloy[J]. Acta Metallurgica Sinica, 2013, 49 (4): 421- 427.
doi: 10.3724/SP.J.1037.2013.00002
11 YUAN Y , ZHONG Z H , YU Z S , et al. Microstructural evolution and compressive deformation of a new Ni-Fe base superalloy after long term thermal exposure at 700℃[J]. Materials Science and Engineering:A, 2014, 619, 364- 369.
doi: 10.1016/j.msea.2014.09.095
12 李玉清, 刘锦岩. 高温合金晶界间隙相[M]. 北京: 冶金工业出版社, 1990: 276- 288.
12 LIY Q, LIUJ Y. Interstitial Phase along Grain Boundaries of Superalloy[M]. Beijing: Metallurgical Industry Press, 1990: 276- 288.
13 BUSBY J T , HASH M C , WAS G S . The relationship between hardness and yield stress in irradiated austenitic and ferritic steels[J]. Journal of Nuclear Materials, 2005, 336 (2): 267- 278.
14 TAKAKUWA O , KAWARAGI Y , SOYAMA H . Estimation of the yield stress of stainless steel from the Vickers hardness taking account of the residual stress[J]. Journal of Surface Engineered Materials and Advanced Technology, 2013, 3 (4): 262- 268.
doi: 10.4236/jsemat.2013.34035
[1] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[2] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[3] 吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
[4] 刘维维, 刘世忠, 李影, 李嘉荣. 长期时效对DD6单晶高温合金组织和力学性能的影响[J]. 材料工程, 2021, 49(6): 94-99.
[5] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[6] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[7] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[8] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[9] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[10] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[11] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[12] 乔及森, 向阳芷, 聂书才, 张涵. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45(11): 78-83.
[13] 金世伟, 康敏, 邵越, 杜晓霞, 张欣颖. 热处理非晶态Ni-P合金镀层的晶化过程[J]. 材料工程, 2016, 44(9): 115-120.
[14] 赵立英, 刘平安. 氧燃比对爆炸喷涂碳化钨涂层结构和性能的影响[J]. 材料工程, 2016, 44(6): 50-55.
[15] 谭毅, 廖娇, 李佳艳, 石爽, 王清, 游小刚, 李鹏廷, 姜辛. 电子束熔炼Inconel740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn