Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (9): 82-88    DOI: 10.11868/j.issn.1001-4381.2016.09.013
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
冷却速率对Mg-4.4Zn-0.3Zr-0.4Y变形镁合金组织和性能的影响
吕滨江1, 彭建2,3, 梁鹏1, 王进1
1 青岛理工大学 机械工程学院, 山东 青岛 266520;
2 重庆大学 材料科学与工程学院, 重庆 400044;
3 机械传动国家重点实验室, 重庆 400045
Effect of Cooling Rate on Microstructure and Mechanical Property of Mg-4.4Zn-0.3Zr-0.4Y Wrought Magnesium Alloy
LYU Bin-jiang1, PENG Jian2,3, LIANG Peng1, WANG Jin1
1 College of Mechanical Engineering, Qingdao Technological University, Qingdao 266520, Shandong, China;
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
3 The State Laboratory of Mechanical Transmissions, Chongqing 400045, China
全文: PDF(9559 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过水冷和空冷两种冷却方式制备成分相同的Mg-4.4Zn-0.3Zr-0.4Y(质量分数/%,下同)铸态合金,挤压变形后进行时效处理,研究不同熔体冷却速率对挤压态和时效态合金组织性能的影响。结果表明:通过水冷冷却可以显著细化铸态组织,促进I相(Mg3YZn6)的生成,并抑制W相(Mg3Y2Zn3)的形核;由于初始组织不同,水冷和空冷两种冷却方式铸造的Mg-4.4Zn-0.3Zr-0.4Y合金经过挤压变形后,抗拉强度分别达到327MPa和306MPa,伸长率分别达到14.8%和10.0%;时效处理后,合金的晶粒尺寸和织构强度变化很小,析出的MgZn相和MgZn2相含量成为影响时效态合金性能的主要因素;时效处理挤压态水冷冷却铸造合金的屈服强度和抗拉强度分别达到330MPa和348MPa,伸长率为14.4%,与时效前相比略有减小;时效处理挤压态空冷铸造合金的屈服强度和抗拉强度增大至344MPa和359MPa,伸长率降至8.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕滨江
彭建
梁鹏
王进
关键词 变形镁合金冷却速率准晶组织性能    
Abstract:The Mg-4.4Zn-0.3Zr-0.4Y (mass fraction/%) alloy ingots were prepared by two casting processes namely air cooling and water cooling. These two types of Mg-4.4Zn-0.3Zr-0.4Y alloy ingots were extruded and then ageing treated under the same conditions, and the effect of ageing treatment on the microstructure and mechanical properties of the alloys was studied. The results show that the lamellar eutectic structure and dendrite cell size are significantly refined under water cooling, which restrain the formation of W phase (Mg3Y2Zn3) and promote the increase of volume fraction of I phase (Mg3YZn6) in the as-cast alloy. For the different original microstructure and second phase, the ultimate tensile strengths of the extruded Mg-4.4Zn-0.3Zr-0.4Y alloy under water cooling and air cooling reach 327MPa and 306MPa respectively, and the elongations of the alloy reach 14.8% and 10.0% respectively. After ageing treatment, the grain size and texture intensity change slightly. Thus, the contents of precipitated phases (MgZn and MgZn2) mainly affect the mechanical properties of the extruded alloy. The aged as-extruded alloy exhibits a tensile yield strength, an ultimate tensile strength and an elongation of 330, 348MPa and 14.4% respectively under water cooling, and 344, 359MPa and 8.6% respectively under air cooling.
Key wordswrought magnesium alloy    cooling rate    quasicrystal    microstructure    mechanical property
收稿日期: 2015-01-14      出版日期: 2016-09-27
中图分类号:  TG146.2+2  
通讯作者: 吕滨江(1983-),男,博士,讲师,从事轻合金新材料及其加工工艺研究开发,联系地址:山东省青岛市黄岛区嘉陵江西路777号青岛理工大学机械工程学院(266520),E-mail:lbj818@163.com     E-mail: lbj818@163.com
引用本文:   
吕滨江, 彭建, 梁鹏, 王进. 冷却速率对Mg-4.4Zn-0.3Zr-0.4Y变形镁合金组织和性能的影响[J]. 材料工程, 2016, 44(9): 82-88.
LYU Bin-jiang, PENG Jian, LIANG Peng, WANG Jin. Effect of Cooling Rate on Microstructure and Mechanical Property of Mg-4.4Zn-0.3Zr-0.4Y Wrought Magnesium Alloy. Journal of Materials Engineering, 2016, 44(9): 82-88.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.013      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/82
[1] SINGH A,SOMEKAWA H,MUKAI T.High temperature processing of Mg-Zn-Y alloys containing quasicrystal phase for high strength[J].Materials Science and Engineering:A,2011,528(21):6647-6651.
[2] 何维维,张坤,黄敏,等.不同增强相对挤压态Mg-Zn-Mn-Y合金动态再结晶影响分析[J].航空材料学报,2012,32(5):7-17.HE W W,ZHANG K,HUANG M,et al.Influence of second phase on dynamic recrystallization mechanisms in extruded Mg-Zn-Y magnesium alloy[J].Journal of Aeronautical Materials,2012,32(5):7-17.
[3] HUANG H,YUAN G,CHEN C,et al.Excellent mechanical properties of an ultrafine-grained quasicrystalline strengthened magnesium alloy with multi-modal microstructure[J].Materials Letters,2013,107:181-184.
[4] OHASHI W,SPAEPEN F.Stable Ga-Mg-Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology[J].Nature,1987,330:555-556.
[5] STAN K,LITY N'SKA-DOBRZY N'SKA L,LÁBÁR J L,et al.Effect of Mo on stability of quasicrystalline phase in Al-Mn-Fe alloy[J].Journal of Alloys and Compounds,2014,586:S395-S399.
[6] LANGSDORF A,ASSMUS W.Growth of large single grains of the icosahedral quasicrystal ZnMgY[J].Journal of Crystal Growth,1998,192(1-2):152-156.
[7] 史菲,王文博,郭学锋,等.阶梯模冷却Mg68Zn29Y3合金的组织及准晶相的形成[J].中国稀土学报,2010,28(1):85-89.SHI F,WANG W B,GUO X F,et al.Microstructures and formation of quasicrystal phase in as-cast Mg68Zn29Y3 alloy cooling with step die[J].Journal of the Chinese Rare Earth Society,2010,28(1):85-89.
[8] ZHANG Y,YU S,SONG Y,et al.Microstructures and mechanical properties of quasicrystal reinforced Mg matrix composites[J].Journal of Alloys and Compounds,2008,464(1-2):575-579.
[9] 吕滨江,彭建,韩韡,等.水冷对普通铸造Mg-Zn-Zr-Y镁合金准晶相形成的影响及铸态组织研究[J].稀有金属材料与工程,2014,43(7):1643-1648.LV B J,PENG J,HAN W,et al.Effects of water-cooling on quasicrystal formation of as-cast Mg-Zn-Zr-Y alloys and the microstructure[J].Rare Metal Materials and Engineering,2014,43(7):1643-1648.
[10] BAE D,KIM S,KIM D,et al.Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles[J].Acta Materialia,2002,50(9):2343-2356.
[11] BAE D,LEE M,KIM K,et al.Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys[J].Journal of Alloys and Compounds,2002,342(1):445-450.
[12] MÜLLER A,GARCÉS G,PÉREZ P,et al.Grain refinement of Mg-Zn-Y alloy reinforced by an icosahedral quasicrystalline phase by severe hot rolling[J].Journal of Alloys and Compounds,2007,443(1-2):L1-L5.
[13] 赵素,李金富,刘礼,等.溶质截流对过冷共晶生长过程的影响[J].金属学报,2008,44(11):1335-1339.ZHAO S,LI J F,LIU L,et al.Effect of solute trapping on the growth process in undercooled eutectic melts[J].Acta Metallurgica Sinica,2008,44(11):1335-1339.
[14] SHECHTMAN D,BLECH I.The microstructure of rapidly solidified Al6Mn[J].Metallurgical Transactions A,1985,16(6):1005-1012.
[15] YANG Z,GUO Y C,LI J P,et al.Plastic deformation and dynamic recrystallization behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr alloy[J].Materials Science and Engineering:A,2008,485(1-2):487-491.
[16] 张丁非,赵霞兵,石国梁,等.Zn含量及热处理对Mg-Zn-Mn变形镁合金显微组织和力学性能的影响[J].稀有金属材料与工程,2011,40(3):418-423.ZHANG D F,ZHAO X B,SHI G L,et al.Effects of Zn content and heat treatment on microstructures and mechanical properties of Mg-Zn-Mn wrought magnesium alloys[J].Rare Metal Materials and Engineering,2011,40(3):418-423.
[17] CHI Y,ZHENG M,XU C,et al.Effect of ageing treatment on the microstructure,texture and mechanical properties of extruded Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt%) alloy[J].Materials Science and Engineering:A,2013,565(10):112-117.
[18] XU D K,TANG W N,LIU L,et al.Effect of W-Phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys[J].Journal of Alloys and Compounds,2008,461(1-2):248-252.
[1] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[5] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[6] 李立珺, 苗瑞霞, 张霞. 氧化锡纳米线的制备及其乙醇气体敏感性能[J]. 材料工程, 2019, 47(6): 82-87.
[7] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[8] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[9] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[10] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[11] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[12] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[13] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[14] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[15] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn