Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (10): 119-128    DOI: 10.11868/j.issn.1001-4381.2016.10.017
  综述 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯/壳聚糖生物复合材料的制备及应用研究进展
吕生华, 李莹, 杨文强, 崔亚亚
陕西科技大学 轻工科学与工程学院, 西安 710021
Research Progress on Preparation and Application of Graphene Oxide/ Chitosan Biocomposites
LYU Sheng-hua, LI Ying, YANG Wen-qiang, CUI Ya-ya
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
全文: PDF(6073 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 氧化石墨烯/壳聚糖复合材料是近几年发展的一种新型生物复合材料,具有独特的力学性能、吸附性能、电化学性能以及抗菌性能等。本文综述了近几年来氧化石墨烯/壳聚糖复合材料的研究进展,简单介绍了该复合材料的制备方法,详细阐述了该复合材料在高机械强度材料、废水处理、电化学传感器、生物医学材料等领域的应用研究,最后对氧化石墨烯/壳聚糖复合材料在低成本、大规模制备,复合材料的结构性质以及在新领域的应用等方面进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕生华
李莹
杨文强
崔亚亚
关键词 氧化石墨烯壳聚糖复合材料研究进展    
Abstract:Graphene oxide/chitosan is a new type of biocomposites which was developed in recent years, it possesses the unique mechanical, adsorptive, electrochemical and antibacterial properties. The research progress of graphene oxide/chitosan composites was summarized in this paper. The preparation methods of the biocomposites were introduced briefly. Meanwhile, the application of the biocomposites in the field of high mechanical strength of materials, waste water treatment, electrochemical sensor and biomedical materials were illustrated in details. At last, the low cost and large scale preparation, structure and properties of composite materials and its application in new areas of graphene oxide/chitosan biocomposites were prospected.
Key wordsgraphene oxide    chitosan    composite    research progress
收稿日期: 2015-05-25      出版日期: 2016-10-20
中图分类号:  TQ317  
通讯作者: 吕生华(1963-),男,教授,博士生导师,主要从事氧化石墨烯的制备及复合材料的研究,联系地址:陕西省西安市未央大学园区陕西科技大学轻工科学与工程学院(710021),E-mail:lvsh@sust.edu.cn     E-mail: lvsh@sust.edu.cn
引用本文:   
吕生华, 李莹, 杨文强, 崔亚亚. 氧化石墨烯/壳聚糖生物复合材料的制备及应用研究进展[J]. 材料工程, 2016, 44(10): 119-128.
LYU Sheng-hua, LI Ying, YANG Wen-qiang, CUI Ya-ya. Research Progress on Preparation and Application of Graphene Oxide/ Chitosan Biocomposites. Journal of Materials Engineering, 2016, 44(10): 119-128.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.10.017      或      http://jme.biam.ac.cn/CN/Y2016/V44/I10/119
[1] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[3] ROBERT J Y, LAN A K, LEI G, et al. The mechanics of graphene nanocomposites:a review[J]. Composites Science and Technology, 2012, 72(12):1459-1476.
[4] RAFAL S, BEATA Z, EWA M. Graphene as a new sorbent in analytical chemistry[J]. TrAC Trends in Analytical Chemistry, 2013, 51:33-43.
[5] 杜彦,季铁正,张教强,等. 石墨烯/高密度聚乙烯导电复合材料的制备与表征[J]. 航空材料学报,2013,33(1):68-71. DU Y, JI T Z, ZHANG J Q, et al. Preparation and characterization of graphene nanosheets/high density polyethylene conductive composites[J]. Journal of Aeronautical Materials, 2013, 33(1):68-71.
[6] CHUNG C, KIM Y K, SHIN D, et al. Biomedical applications of graphene and graphene oxide[J]. Accounts of Chemical Research, 2013, 46(10):2211-2224.
[7] QIU L, YANG X W, GOU X L, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives[J]. Chemistry-A European Journal, 2010, 16(35):10653-10658.
[8] PARK S J, LEE K S, BOZOKLU G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3):572-578.
[9] SURAJIT K, RATAN B, SWAPAN K D. Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode[J]. Journal of Electronic Materials, 2011, 40(11):2248-2255.
[10] HAN Y Q, LU Y. Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites[J]. Composites Science and Technology, 2009, 69(7-8):1231-1237.
[11] PRASHANTH K V H, THARANATHAN R N. Chitin/chitosan:modifications and their unlimited application potentialdan overview[J]. Trends in Food Science & Technology, 2007, 18(3):117-131.
[12] HUANG H, HU N F, ZENG Y H, et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films[J]. Analytical Biochemistry, 2002, 308(1):141-151.
[13] NO H K, PARK N Y, LEE S H, et al. Antibacterial acticity of chitosan and chitosan oligomers with different molecular weights[J]. International Journal of Food Microbiology, 2002, 74(1-2):65-72.
[14] PENICHE C, ARGⅡELLES-MONAL W, PENICHE H, et al. Chitosan:An attractive biocompatible polymer for microencapsulation[J]. Macromolecular Bioscience, 2003, 3(10):511-520.
[15] HAN D L, YAN L F, CHEN W F, et al. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state[J]. Carbohydrate Polymers, 2011, 83(2):653-658.
[16] LIU Y N, PARK M, SHIN H K, et al. Facile preparation and characterization of poly(vinylalcohol)/chitosan/Graphene oxide biocomposite nanofibers[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6):4415-4420.
[17] DU Q J, SUN J K, LI Y H, et al. Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles[J]. Chemical Engineering Journal, 2014, 245:99-106.
[18] HE L H, WANG H F, XIA G M, et al. Chitosan/graphene oxide nanocomposite films with enhanced Interfacial interaction and their electrochemical applications[J]. Applied Surface Science, 2014, 314:510-515.
[19] LIM H N, HUANG N M, LOO C H. Facile preparation of graphene-based chitosan films:Enhanced thermal, mechanical and antibacterial properties[J]. Journal of Non-Crystalline Solids, 2012, 358(3):525-530.
[20] WANG Y, XIA G M, WU C, et al. Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B[J]. Carbohydrate Polymers, 2015, 115:686-693.
[21] LIU L, LI C, BAO C L, et al. Preparation and characterization of chitosan/graphene oxide composite for the adsorption of Au(Ⅲ) and Pd(Ⅱ)[J]. Talanta, 2012, 93:350-357.
[22] YE N S, XIE Y L, SHI P Z, et al. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption[J]. Materials Science and Engineering:C, 2014, 45:8-14.
[23] WANG Y, LIU X, WANG H F, et al. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions[J]. Journal of Colloid and Interface Science, 2014, 416:243-251.
[24] ALHWAIGE A A, AGAG T, ISHIDA H, et al. Biobased chitosan hybrid aerogels with superior adsorption:role of graphene oxide in CO2 capture[J]. RSC Advances, 2013, 3(36):16011-16020.
[25] ARNDT E M, GAWRYLA M D, SCHIRALDI D A. Elastic, low density epoxy/clay aerogel composites[J]. Journal of Materials Chemistry, 2007, 17(33):3525-3529.
[26] ZHANG N N, QIU H X, SI Y M, et al. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions[J]. Carbon, 2011, 49(3):827-837.
[27] HE Y Q, ZHANG N N, WANG X D. Adsorption of graphene oxide/chitosan porous materials for metal ions[J]. Chinese Chemical Letters, 2011, 22(7):859-862.
[28] LI Y H, SUN J K, DU Q J, et al. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning[J]. Carbohydrate Polymers, 2014, 102:755-761.
[29] PAN Y Z, WU T F, BAO H Q, et al. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide[J]. Carbohydrate Polymers, 2011, 83(4):1908-1915.
[30] YANG X M, TU Y F, LI L. Well-dispersed chitosan/graphene oxide nanocomposites[J]. ACS Applied Materials & Interfaces, 2010, 2(6):1707-1713.
[31] PANDELE A M, IONITA M, CRICA L, et al. Synthesis, characterization, and in vitro studies of graphene oxide/chitosan-polyvinyl alcohol films[J]. Carbohydrate Polymers, 2014, 102:813-820.
[32] YU B W, XU J, LIU J H, et al. Adsorption behavior of copper ions on graphene oxide-chitosan aerogel[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):1044-1050.
[33] LI X Y, ZHOU H H, WU W Q, et al. Studies of heavy metal ion adsorption on chitosan/sulfydryl-function-alizedgraphene oxide composites[J]. Journal of Colloid and Interface Science, 2015, 448:389-397.
[34] LI L L, FAN L L, LUO C N, et al. Study of fuchsine adsorption on magnetic chitosan/graphene oxide[J].RSC Advances, 2014, 4(47):24679-24685.
[35] ZHANG Y K, YAN T, YAN L G, et al. Preparation of novel cobalt ferrite/chitosan grafted with graphene composite as effective adsorbents for mercury ions[J]. Journal of Molecular Liquids, 2014, 198:381-387.
[36] FAN L L, LUO C N, SUN M, et al. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/grapheme oxide composites[J].Colloids and Surfaces B:Biointerfaces, 2013, 103:523-529.
[37] LI L L, FAN L L, S M, et al. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J].Colloids and Surfaces B:Biointerfaces, 2013, 107:76-83.
[38] CHEN Y Q, CHEN L B, BAI H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A, 2013, 1(6):1992-2001.
[39] FAN L L, LUO C N, LI X J, et al. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue[J]. Journal of Hazardous Materials, 2012, 215-216:272-279.
[40] NIU X L, YANG W, REN J, et al. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene-ionic liquid-chitosan composite film modified glassy carbon electrode[J]. Electrochimica Acta, 2012, 80:346-353.
[41] ZHOU W S, ZHAO B, HUANG X H, et al. Electrochemical determination of 4-Nonylphenol based on graphene-chitosan modified glassy carbon electrode[J]. Chinese Journal of Analytical Chemistry, 2013, 41(5):675-680.
[42] WANG L, ZHENG Y L, LU X P, et al. Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing[J]. Sensors and Actuators B:Chemical, 2014,195:1-7.
[43] RAJABZADEH S, ROUNAGHI G H, ZAVAR M H A, et al. Development of a dimethyl disulfide electrochemical sensor based on electrodeposited reduced graphene oxide-chitosan modified glassy carbon electrode[J]. Electrochimica Acta, 2014, 135:543-549.
[44] SHIEH Y T, JIANG H F. Graphene oxide-assisted dispersion of carbon nanotubes in sulfonated chitosan-modified electrode for selective detections of dopamine, uric acid, and ascorbic acid[J]. Journal of Electroanalytical Chemistry, 2015, 736:132-138.
[45] LU W B, LUO Y L, CHANG G H, et al. Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection[J]. Biosensors and Bioelectronics, 2011, 26(12):4791-4797.
[46] ROOMA D, SHABNAM R, C.S. PUNDIR. Construction of a chitosan/polyaniline/graphene oxide nanoparticles/polypyrrole/Au electrode for amperometric determination of urinary/plasma oxalate[J]. Sensors and Actuators B:Chemical, 2013, 186:17-26.
[47] LIU X, XIE L L, LI H L. Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol-gel hybrid membranes for determination of dopamine and uric acid[J]. Journal of Electroanalytical Chemistry, 2012, 682:158-163.
[48] TIWARI I, SINGH M, PANDEY C M, et al. Electrochemical genosensor based on graphene oxide modified iron oxide-chitosan hybrid nanocomposite for pathogen detection[J]. Sensors and Actuators B:Chemical, 2015, 206:276-283.
[49] WANG X, LI H,WU M, et al. Simultaneous electrochemical determination of sulphite and nitrite by a gold nanoparticle/graphene-chitosan modified electrode[J]. Chinese Journal of Analytical Chemistry, 2013, 41(8):1232-1237.
[50] HU W B, PENG C, LUO W J, et al. Graphene-Based Antibacterial Paper[J]. ACS Nano, 2010, (4)7:4317-4323.
[51] MAZAHERI M, AKHAVAN O, SIMCHI A. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation[J]. Applied Surface Science, 2014, 301:456-462.
[52] LEE S K, KIM H, SHIM B S. Graphene:an emerging material for biological tissue engineering[J]. Carbon Letters, 2013, 14(2):63-75.
[53] HU H L, TANG C, YIN C H. Folate conjugated trimethyl chitosan/graphene oxide nanocomplexes as potential carriers for drug and gene delivery[J]. Materials Letters, 2014, 125:82-85.
[54] WANG C, CHEN B B, ZOU M J, et al. Cyclic RGD-modified chitosan/graphene oxide polymers for drugdelivery and cellular imaging[J]. Colloids and Surfaces B:Biointerfaces, 2014, 122:332-340.
[55] BEHNAZ A, NADIA A A, MOHAMMAD I, et al. Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds[J]. Materials Science and Engineering:C, 2015, 48:384-390.
[56] BAO H Q, PAN Y Z, PING Y, et al. Chitosan-functionalizedgraphene oxide as a nanocarrier for drug and gene delivery[J]. Small,2011, 7(11):1569-1578.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 赵晓燕, 黄晨, 张帅, 汪称意. 壳聚糖/聚乙烯醇过滤膜的制备及其性能表征[J]. 材料工程, 2020, 48(7): 176-183.
[14] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[15] 李进, 候冰娜, 韩超越, 倪凯, 赵梓年, 李征征. 可注射乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及药物缓释研究[J]. 材料工程, 2020, 48(5): 83-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn