基于脉冲微孔喷射法(POEM)开发均匀液滴喷射成型设备,可实现均匀微熔滴的逐滴三维沉积,并通过一系列实验研究一维柱沉积时微熔滴沉积位置的准确性以及一维线沉积时平台运动速率对微熔滴结合的影响。结果表明:微熔滴的沉积具有可重复性并且沉积位置准确;当平台运动速率为600μm/s时,微熔滴间的结合良好,表面光滑无明显缺陷。最后进行简单立体薄壁制件的沉积,制件结构稳定,熔滴排布均匀,因此该方法可实现金属均匀微滴的沉积成型。
采用真空非自耗电弧熔炼制备添加稀土元素的Nb-20Ti-16Si-3Al-3Cr-2Hf合金纽扣锭,稀土元素为不同含量的Sm,La,Tb。对铸态合金进行微观组织分析和室温断裂韧度测试。结果表明:合金主要由(Nb,Ti)相与Nb5Si3相组成,不同部位存在多种微观组织,粗大的两相组织存在宏观聚集现象;纽扣锭中普遍存在规则的共晶晶胞和以Nb5Si3相为核心的板条状晶胞;共晶晶胞中心为Nb5Si3相和铌固溶体相Nbss组成的层片状组织,外围为粗大的“齿状”两相组织;板条状晶胞的Nb5Si3相核心保留了完整的平直界面和规则的棱角,晶胞外围主要由细小网状的硅化物和粗大的树枝状Nbss相组成。使用多元线性回归分析不同稀土含量与合金室温断裂韧度的关系,不同稀土含量的合金室温断裂韧度值分布在11~15MPa·m1/2之间,多元线性逐步回归分析后得到室温断裂韧度Kq与稀土含量(Sm,La,Tb)的关系为Kq=10.344+6.896La+2.993Sm。
以全动态DSC扫描实验为基础,结合半经验的唯象模型获得了基于唯象模型的具有双峰反应特性的高韧性双马来酰亚胺5429树脂的固化动力学参数,建立相应的唯象动力学模型。以5429树脂在180℃条件下,恒温不同时间的DSC实验数据为基础,利用DiBenedetto方程研究等温条件下固化度与加热时间的关系并得到玻璃化转变温度与固化时间的关系表达式,并采用凝胶盘法得到5429树脂不同温度下的凝胶时间,建立了凝胶时的固化度和玻璃化转变温度之间的函数关系,在此基础上绘制了TTT图,从TTT图中得到的5429树脂的最优固化工艺曲线与其标准固化工艺曲线一致。
为解决镍基金刚石复合电沉积过程中普遍存在镀层沉积速率慢、镀层内应力大的问题,本工作以新型高速Ni镀液为基础,考查了镀液中去应力添加剂含量、工艺参数,以及金刚石含量对镀层内应力影响的规律,并对复合镀层的微观形貌进行了表征。优选出了可以在30A/dm2的高阴极电流密度下快速电沉积低应力镍基金刚石复合镀层的镀液组成及工艺条件。结果表明:当镀液组成为十二烷基硫酸钠0.5g/L,乙酸铵3g/L,柠檬酸三钠1.5g/L,金刚石微粒浓度30g/L;施镀条件为pH值3~4,温度50℃时,制得的复合镀层内应力最低。
用闭合场非平衡磁控溅射离子镀在304不锈钢表面沉积CrN和CrNiN涂层。采用X射线衍射和场发射扫描电镜表征涂层的结构和形貌。采用电化学测试、界面接触电阻测试以及疏水性测试等方法,研究两种不同涂层在模拟质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)环境下的电化学腐蚀性能、界面接触电阻以及疏水性能。结果表明:CrN涂层主要包含CrN和Cr2N相,CrNiN涂层中CrN和Cr2N相较少,Ni在CrNiN涂层中以单质形式存在;动态极化测试表明涂层的耐蚀性能较好,其中CrNiN涂层的耐蚀性能较CrN涂层差,恒电位极化测试表明CrN和CrNiN涂层的电流密度相当;CrN和CrNiN涂层都显著降低了304不锈钢的界面接触电阻,其中CrN涂层的接触电阻最小;CrNiN涂层疏水性能优于CrN涂层,更有利于质子交换膜燃料电池中的水管理。
采用SRV-Ⅳ型摩擦磨损试验机研究凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能,利用SEM和XPS对磨损表面进行表征分析。结果表明:两种单一添加剂均能明显改善基础油对钢-钢摩擦副的摩擦学性能,而复合添加剂较单一添加剂具有更加优越的减摩抗磨性;载荷越高,复合添加剂的摩擦学性能越好。在复合添加剂的作用下,磨损表面形成了致密光滑的复合摩擦保护膜,该保护膜的主要成分为FeS2,Fe2O3,SiO2,Cu,FeOOH和有机物。
采用旋转摩擦挤压(RFE)法制备多壁碳纳米管增强铝基(MWCNTs/Al)复合材料,分析MWCNTs/Al复合材料的显微组织、硬度和磨损性能。结果表明:用RFE法可制备具有一定形状尺寸的块体MWCNTs/Al复合材料;复合材料的成形质量好,显微组织为经动态再结晶后的细小等轴晶,MWCNTs在铝合金基体中分布均匀。复合材料的硬度随着MWCNTs体积分数增加先增加后降低,当MWCNTs体积分数为4%时,硬度是经RFE加工后基材的1.2倍。MWCNTs在复合材料磨损过程中起润滑作用,有助于降低MWCNTs/Al复合材料的磨损量提高复合材料的耐磨性。随MWCNTs体积分数的增加,复合材料的磨损率降低,当MWCNTs体积分数大于3%后磨损率变化较小。这是由于MWCNTs体积分数的增加,磨损机制发生变化,即由黏着磨损和轻微磨粒磨损转变为剥层磨损和磨粒磨损。
利用扫描电镜及其能谱仪、同步热分析仪以及对比实验来分析Sn对电真空Ag-Cu钎料微观组织、熔化特性和钎焊性能的影响。结果表明:Sn添加4%(质量分数,下同)时,Ag60Cu钎料中没有脆性β-Cu相生成,对钎料的加工性能影响不大;随着Sn含量的增加,Ag60Cu钎料的液相线温度逐渐降低,同时固相线温度降低幅度更大,导致熔化温度范围扩大,钎料的填缝性能变差;对于含Sn为4%的Ag60Cu钎料,与紫铜的铺展性能以及冶金结合性能都接近于BAg72Cu钎料,并可通过压力加工制成片状钎料,可以用来替代BAg72Cu片状钎料使用。
通过1280,1300℃和1320℃ 3个温度的热等静压实验,对比分析热等静压对第二代单晶高温合金DD6显微组织和力学性能的影响。结果表明:热等静压能够显著减少显微疏松,尤其是经过1300℃/100MPa,4h热等静压处理的合金内部显微疏松含量从0.31%降低到0.04%。提高热等静压温度能显著减少共晶含量。热等静压对合金的持久性能没有明显影响,但能显著提高DD6单晶合金的低周疲劳性能。经过1300℃/100MPa,4h热等静压处理的合金疲劳寿命较经过标准热处理的疲劳寿命提高了一个数量级,这与热等静压显著减少合金中的疏松孔洞相关。
以FeSO4·7H2O,LiOH·H2O和H3PO4为原料,葡萄糖为改性剂,采用微波水热法合成具有正交晶系橄榄石结构的LiFePO4/C复合材料。借助XRD,SEM,EDS和电化学性能测试等分析,研究葡萄糖对产物组成、结构、微观形貌和电化学性能的影响。结果表明:葡萄糖改性后,LiFePO4结构中Fe,P和O原子间的结合增强,颗粒尺寸减小,表面有碳层包覆,电化学性能提高。LiFePO4/C在0.1 C倍率下的首次放电比容量为125.6mAh/g;1.0 C倍率下的首次放电比容量为106.2mAh/g,30次循环后的容量保持率为91.3%。
针对薄层材料超声测厚过程中回波信号混叠、超声纵波声速未知导致薄层厚度无法测量的问题,提出一种基于声压反射系数幅度谱(Ultrasonic Reflection Coefficient Amplitude Spectrum,URCAS)匹配分析技术同时测量薄层厚度和超声纵波声速的方法。采用相关系数法对薄层试样实测声压反射系数幅度谱和理论声压反射系数幅度谱在超声检测有效频带范围内逐一进行匹配分析,通过反演计算得到相关系数最大值点对应的超声检测参数,最终实现薄层厚度和超声纵波声速的同时表征。利用该方法对铝合金基体上的雷达吸波涂层(Radar Absorbing Coatings,RAC)进行实验测试及信号分析。结果表明:该方法可以有效实现混叠信号中超声特征参量的提取,反演得到吸波涂层厚度与千分尺测量厚度间相对误差为2.53%~3.72%、纵波声速测量相对误差为2.51%~3.75%。
利用电子背散射衍射(EBSD)实验分析了马氏体组织的微区弹性刚度分布,并在此基础上建立应力-氢交互作用的耦合有限元模型,研究马氏体组织的各向异性对微区应力和氢分布的影响。结果表明:相邻Block板条束之间的取向差互成60°,在同一受力方向上不同Block板条束具有不同的弹性刚度,从而引发组织间的微区应力和氢呈不均匀分布,Block板条束是表征微区应力的组织单元。Block板条束弹性刚度梯度和组织尺寸决定了组织间的应力集中,而应力集中又影响了氢的分布。弹性刚度梯度高和板条束尺寸大的Block组织单元应力集中较为严重,并富集高浓度的氢,最终引发氢致开裂。上述模拟结果与氢脆断口的微观断裂形貌和氢脆裂纹的EBSD分析结果相符。
通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)、复丝拉伸法、单丝拉伸法及单丝断裂法对3种国产800-12K碳纤维表面状态及其复丝拉伸性能、单丝复合体系的界面性能进行系统分析与研究。结果表明:3种国产800级碳纤维表面均较为光滑,纤维的粗糙度为9~17nm,纤维表面含氧量较高且稳定,O/C在0.23~0.27之间;3种国产800级碳纤维复丝拉伸强度相当,质量控制稳定,断裂伸长率为1.9左右,纤维与树脂基体匹配性较好;3种国产800级碳纤维单丝拉伸强度不稳定,纤维的表面化学活性对纤维与树脂基体的界面结合强度影响显著。
采用浸渍法制备SiO2凝胶/铝硅纤维复合材料。研究Si粉质量分数为0%,0.2%,0.4%,0.6%和0.8%时,SiO2凝胶/铝硅纤维复合材料的微观形貌、体积密度、回弹率和物相组成。结果表明:Si粉质量分数低于0.6%时,其氧化产生的体积膨胀填补了纤维与凝胶间的裂纹,体积密度由0.468g/cm3增大到0.723g/cm3,回弹率由43.1%升高为59.6%,并且Si粉高温下的结晶化抑制了纤维析晶和促进了辉石的生成,这是材料的力学性能提高及高温损坏程度降低的重要原因;Si粉质量分数为0.8%时,高温下的Si粉产生了过分的体积膨胀,导致复合材料内部出现较大裂纹,压缩回弹率降低为44.5%。
通过电化学阻抗谱和动电位扫描法研究X65管线钢在含氧氯化钠溶液中沉积物对电化学参数的影响。采用电阻法(ER)结合零电阻电流计(ZRA)研究X65钢在沉积物覆盖下的电偶腐蚀行为与不同浓度有机膦缓蚀剂的作用效果。结果表明:X65钢在SiO2沉积物覆盖时腐蚀电位负移,腐蚀速率降低。当有沉积物覆盖与无沉积物覆盖的电偶试片相连时,X65钢在沉积物下发生阳极极化,阳极电偶电流密度在18h内由120μA/cm2衰减到50μA/cm2并保持稳定。依次加入5×10-5,8×10-5和3×10-4浓度的 PBTCA后,电偶电流在最高升至1300μA/cm2后逐渐下降并稳定在610μA/cm2附近,沉积物下X65钢腐蚀速率达到6.11mm/a,PBTCA加速了X65钢在含氧溶液中沉积物下的腐蚀。通过对试片表面进行观察,沉积物下X65钢表面发生了严重的局部腐蚀。
随着先进电子科学技术的迅速发展,电磁辐射造成的电磁污染、电磁干扰、泄密等问题已经成为电子、航天、航空、信息、通信等领域关注的重要问题,本文基于电磁屏蔽的基本理论与石墨烯的主要制备方法,针对不同的应用场合,综述了石墨烯基块体电磁屏蔽材料、泡沫电磁屏蔽材料、柔性薄层电磁屏蔽材料、高温电磁屏蔽材料4大类轻质电磁屏蔽材料的研究进展。同时,概述了石墨烯基电磁屏蔽材料的主要设计思路和制备方法,讨论了电磁屏蔽材料中的基本科学问题。基于应用发展的需求,分析了未来新型电磁屏蔽材料的发展方向和趋势,为发展设计新一代轻质高性能电磁屏蔽材料及结构提出了新的构想。
氧化石墨烯/壳聚糖复合材料是近几年发展的一种新型生物复合材料,具有独特的力学性能、吸附性能、电化学性能以及抗菌性能等。本文综述了近几年来氧化石墨烯/壳聚糖复合材料的研究进展,简单介绍了该复合材料的制备方法,详细阐述了该复合材料在高机械强度材料、废水处理、电化学传感器、生物医学材料等领域的应用研究,最后对氧化石墨烯/壳聚糖复合材料在低成本、大规模制备,复合材料的结构性质以及在新领域的应用等方面进行了展望。