Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (12): 35-40    DOI: 10.11868/j.issn.1001-4381.2016.12.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
SiC陶瓷表面处理工艺对SiC-AFRP界面粘接性能的影响
魏汝斌1,2, 李锋1,2, 梁勇芳1,2, 翟文1,2, 张文婷1,2, 陈青香1,2
1. 山东非金属材料研究所, 济南 250031;
2. 山东三达科技发展有限公司, 济南 250031
Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP
WEI Ru-bin1,2, LI Feng1,2, LIANG Yong-fang1,2, ZHAI Wen1,2, ZHANG Wen-ting1,2, CHEN Qing-xiang1,2
1. Shandong Non-metallic Materials Institute, Jinan 250031, China;
2. Shandong Sanda Scientific and Technological Development Co., Ltd., Jinan 250031, China
全文: PDF(3325 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为提高SiC陶瓷-芳纶纤维增强树脂基复合材料(SiC-AFRP)的界面粘接性能,研究了陶瓷腐蚀工艺、偶联剂处理工艺、粘接剂种类对SiC-AFRP界面剥离强度的影响。结果表明:SiC陶瓷表面腐蚀工艺和偶联剂处理工艺能有效提高SiC-AFRP界面粘接性能。陶瓷经K3Fe(CN)6与KOH混合腐蚀液浸泡2h,使用乙烯基三乙氧基硅烷偶联剂偶联化处理后,SiC-AFRP的界面剥离强度由0.45kN/m提高至2.20kN/m;VA含量15%(质量分数)的EVA热熔胶膜是理想的界面胶黏剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏汝斌
李锋
梁勇芳
翟文
张文婷
陈青香
关键词 表面处理SiC-AFRP粘接性能腐蚀    
Abstract:To improve the interfacial bonding properties of SiC-aramid fiber reinforced polymer matrix composites (SiC-AFRP), the influences of etching process of SiC ceramic, coupling treatment process, and the adhesives types on the interfacial peel strength of SiC-AFRP were studied. The results show that the surface etching process and coupling treatment process of silicon carbide ceramic can effectively enhance interfacial bonding property of the SiC-AFRP. After soaked the ceramic in K3Fe(CN)6 and KOH mixed etching solution for 2 hours, and coupled with vinyl triethoxy silane coupling agent, the interfacial peel strength of the SiC-AFRP significantly increases from 0.45kN/m to 2.20kN/m. EVA hot melt film with mass fraction of 15%VA is ideal for interface adhesive.
Key wordssurface treatment    SiC-AFRP    bonding property    corrosion
收稿日期: 2015-05-27      出版日期: 2016-12-16
中图分类号:  TB332  
通讯作者: 翟文(1966-),男,研究员,硕士,研究方向:高效抗冲击复合材料与功能防护材料,联系地址:山东省济南市天桥区田家庄东路3号山东非金属材料研究所(250031),E-mail:18653127753@163.com     E-mail: 18653127753@163.com
引用本文:   
魏汝斌, 李锋, 梁勇芳, 翟文, 张文婷, 陈青香. SiC陶瓷表面处理工艺对SiC-AFRP界面粘接性能的影响[J]. 材料工程, 2016, 44(12): 35-40.
WEI Ru-bin, LI Feng, LIANG Yong-fang, ZHAI Wen, ZHANG Wen-ting, CHEN Qing-xiang. Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP. Journal of Materials Engineering, 2016, 44(12): 35-40.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.12.006      或      http://jme.biam.ac.cn/CN/Y2016/V44/I12/35
[1] TALIB A R A,ABBUD L H,ALI A,et al.Ballistic impact performance of Kevlar-29 and Al2O3,powder/epoxy targets under high velocity impact[J].Materials & Design,2012,35:12-19.
[2] CHEESEMAN B A,BOGETTI T A.Ballistic impact into fabric and compliant composite laminates[J].Composite Structures,2003,61(1-2):161-173.
[3] YAHAYA R,SAPUAN S M,JAWAID M,et al.Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites[J].Materials and Design,2014,63(2):775-782.
[4] 王恒武,王继辉,朱京杨,等.纤维增强树脂基复合材料界面粘结强度测试方法探讨[J].玻璃钢/复合材料,2003,(3):42-45. WANG H W,WANG J H,ZHU J Y,et al.Discussion on measurement methods of interfacial adhesion strength of fiber reinforced polymer composites[J].Fiber Reinforced Plastics/Composites,2003,(3):42-45.
[5] 魏汝斌,李锋,梁勇芳,等.碳化硅抗弹陶瓷的研究进展及在装甲防护领域的应用[J].兵器材料科学与工程,2014,(6):145-148. WEI R B,LI F,LIANG Y F,et al.Research progress in bulletproof SiC ceramic and its applications in armor protection field[J].Ordnance Material Science and Engineering,2014,(6):145-148.
[6] UEHARA K,SAKURAI M.Bonding strength of adhesives and surface roughness of joined parts[J].Journal of Materials Processing Technology,2002,127(2):178-181.
[7] 李慧,张鹏,程永奇,等.金属表面预处理对金属/聚合物界面粘结强度的影响[J].玻璃钢/复合材料,2013,(4):51-54. LI H,ZHANG P,CHENG Y Q,et al.Research effects of metal pretreatment on the bonding strength of metal/polymer interface[J].Fiber Reinforced Plastics/Composites,2013,(4):51-54.
[8] HERRMANN M,SEMPF K,WENDROCK H,et al.Electrochemical corrosion of silicon carbide ceramics in sodium hydroxide[J].Journal of the European Ceramic Society,2014,34(7):1687-1693.
[9] TAKAHASHI M,KONDO M.Corrosion resistance of ceramics SiC and Si3N4 in flowing lead-bismuth eutectic[J].Progress in Nuclear Energy,2011,53(7):1061-1065.
[10] CHARPENTIER L,BALAT-PICHELIN M,AUDUBERT F.High temperature oxidation of SiC under helium with low-pressure oxygen-part 1:sintered α-SiC[J].Journal of the European Ceramic Society,2010,30(12):2653-2660.
[11] 胡萍,姜明,黄畴,等.硅烷偶联剂的界面性能研究[J].表面技术,2004,33(5):19-21. HU P,JIANG M,HUANG C,et al.Research on interface property of silicon coupling agent[J].Surface Technology,2004,33(5):19-21.
[12] 张明宗,管从胜,王威强.有机硅烷偶联剂在金属表面预处理中的应用[J].腐蚀科学与防护技术,2001,13(2):96-100. ZHANG M Z,GUAN C S,WANG W Q.Application of silane coupling agents in pretreatment of metal surface[J].Corrosion Science and Protection Technology,2001,13(2):96-100.
[13] WEI B G,CHANG Q,BAO C,et al.Surface modification of filter medium particles with silane coupling agent KH550[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,434(19):276-280.
[14] 袁桂素,张正根.EVA树脂性能及用途[J].粘接,1993,(5):17-23. YUAN G S,ZHANG Z G.Properties and use of the EVA resin[J].Adhesion in China,1993,(5):17-23.
[15] 樊东黎.金相腐蚀剂介绍[J].金属热处理,2008,33(2):110-111. FAN D L.Metallographic etchant introduction[J].Heat Treatment of Metals,2008,33(2):110-111.
[16] 杜慧翔,黄活阳,王文鹏,等.硅烷偶联剂的偶联作用机理及其在密封胶中的应用[J].化学与黏合,2013,35(2):63-65. DU H X,HUANG H Y,WANG W P,et al.Coupling mechanism of silane coupling agent and its application in sealant[J].Chemistry and Adhesion,2013,35(2):63-65.
[17] ARKLES B.Tailoring surfaces with silanes[J].Chem Tech,1977,7(12):766-769.
[1] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[2] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[3] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[4] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[5] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
[6] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[7] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[8] 张莹, 高博, 王磊, 宋秀. 一种新型钴基高温合金在900℃熔融NaCl中的热腐蚀行为[J]. 材料工程, 2018, 46(8): 134-139.
[9] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[10] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[11] 李晓龙, 张杰, 张鑫, 汪江伟, 徐会会, 段继周, 侯保荣. 海洋污损生物的附着对Q235碳钢表面阴极保护钙质沉积层形成的影响[J]. 材料工程, 2018, 46(6): 88-94.
[12] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[13] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[14] 杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
[15] 龙伟漾, 吴玉萍, 高文文, 洪晟. Zn-Al-Mg-RE涂层在含SRB海水中的耐腐蚀性与机理[J]. 材料工程, 2018, 46(3): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn