碳纳米管(CNTs)经不同方法修饰后,通过湿式球磨法制备2%-CNTs/Cu(体积分数,下同)复合粉体,再通过H2退火-冷压烧结工艺制得2%-CNTs/Cu复合材料。结果表明:球磨短切后CNTs的长度变短,端口被打开,无定型碳增多,而混酸纯化后CNTs表面的杂质完全被除去,引入大量含氧活性基团;湿式球磨法可以将CNTs嵌入Cu基体中,并与其紧密结合形成片状复合结构,再经H2退火处理后得到超细晶复合粉体;短切和纯化都有利于CNTs在Cu基体的分散与结合,其中短切CNTs纯化后制得复合材料的抗拉强度和维氏硬度最高,分别为296MPa和139.8HV,较基体提高了123.6%和42.9%,归因于细晶强化和载荷传递。
通过热力学计算修正的MnSO4-SO42--H2O镀液体系平衡电势E0-pH图,明确了363K和Mn2+浓度0.2mol·dm-3时MnO2物相结构材料阳极电沉积有效pH值范围,通过对氧化物结构表征及电化学性能测试获得了pH值的影响规律。结果表明:pH值在0.33~3.4时,随着pH值增大,有利于MnO2物相结构Mn-Mo氧化物的有效析出,但pH值增大虽可提高阳极电沉积效率,却造成镀层质量变差,电催化性能明显劣化,镀液pH=0.5时获得的Mn-Mo氧化物具有优异的镀层质量和高的电催化性能。原因分析表明,该现象主要与氧化物制备过程中析氧反应的竞争密切相关:pH值较小时,竞争析氧反应造成固液界面搅动,抑制氧化物枝晶生长,同时使扩散层减薄,促进氧化物在电极微观表面各处更多形核,细化晶粒,从而提高氧化物的电催化性能。
采用上浆的方法将碳纳米管(CNTs)引入到碳纤维表面,制备CF/CNTs/环氧多尺度复合材料。相比上浆处理前,复合材料的层间剪切强度及弯曲强度分别提高了13.54%和12.88%。采用力调制原子力显微镜及扫描电镜的线扫描功能对复合材料界面相精细结构进行分析。结果表明:CNTs的引入在纤维和基体间构建了一种CNTs增强环氧树脂的界面过渡层。该界面过渡层具有一定厚度,且其模量和碳元素含量呈梯度分布。在固化成型前对含有CNTs的复合材料进行超声处理,促使碳纤维表面的CNTs向周围树脂中分散,发现复合材料的界面过渡层被弱化,其层间剪切强度及弯曲强度较超声处理前分别下降了7.33%和5.34%,验证了CNTs强化的界面过渡层对于提高复合材料界面性能的重要作用。
采用溶胶-凝胶法制备HZSM-5负载SrTiO3,对其进行XRD,SEM,BET,BJH和FT-IR表征,研究SrTiO3/HZSM-5光催化降解活性艳红X-3B的活性。结果表明:SrTiO3材料的主要成分为钙钛矿结构SrTiO3,并含有少量SrCO3相。在负载型χSrTiO3/HZSM-5样品中,SrTiO3包覆在HZSM-5的外表面。负载型催化剂的比表面积主要由分子筛提供,材料中的孔径主要分布在2~20nm范围内。负载后SrTiO3的光催化活性明显提高,30% SrTiO3/HZSM-5具有最强的光催化活性。经90min光照后,93.8%的活性艳红X-3B在30% SrTiO3/HZSM-5上降解,而在纯SrTiO3上只能降解23.9%。
通过电刷镀-激光加工法在铝合金表面制备出特殊的复合结构,获得具有低黏附、耐腐蚀特性的超疏水表面,其对水的静态接触角达到155.1°,滚动角小于5.6°。利用扫描电子显微镜(SEM)、光学显微镜、接触角测量仪(OCA15 Pro)和X射线衍射仪(XRD)表征表面的形貌结构、润湿特性和物相组成,并通过腐蚀性实验对表面的耐腐蚀性能进行研究。结果表明:制备表面是一种带有孔洞的沟槽与菜花状的凸包簇形成的复合结构,并且各凹槽与凸包结构均为定尺寸分布。电刷镀处理使表面物相组成相对于基体表面发生明显变化,进一步的激光加工使峰值强度增强,材料组织发生细化现象;耦合方法所制备表面的耐腐蚀性也得到改善。
为提高SiC陶瓷-芳纶纤维增强树脂基复合材料(SiC-AFRP)的界面粘接性能,研究了陶瓷腐蚀工艺、偶联剂处理工艺、粘接剂种类对SiC-AFRP界面剥离强度的影响。结果表明:SiC陶瓷表面腐蚀工艺和偶联剂处理工艺能有效提高SiC-AFRP界面粘接性能。陶瓷经K3Fe(CN)6与KOH混合腐蚀液浸泡2h,使用乙烯基三乙氧基硅烷偶联剂偶联化处理后,SiC-AFRP的界面剥离强度由0.45kN/m提高至2.20kN/m;VA含量15%(质量分数)的EVA热熔胶膜是理想的界面胶黏剂。
采用热顶直冷半连续铸造法制备了一种Zn元素含量达9.6%(质量分数)的Al-Zn-Mg-Cu系铝合金。利用金相显微镜、透射电镜进行微观组织观察,采用差热分析仪测试相转变温度。测试了硬度、拉伸性能并利用扫描电镜进行断口分析。表明:铸锭的铸态组织细小,晶间共晶相较少,共晶相的熔化温度为473.4℃。铸锭的均匀化工艺为465℃/24h,经均匀化处理后,晶界变为断续状,晶界相明显回溶。通过挤压法制备合金棒材,系统研究挤压棒材在不同温度下的单级和三级时效硬化曲线。表明在135℃/12h的单级时效制度下,合金挤压棒材的峰值硬度为197.7HBS,抗拉强度、屈服强度和伸长率分别为727.5,718.0MPa和9.3%;在120℃/24h+190℃/5min+135℃/3h的三级时效制度下,合金挤压棒材的峰值硬度为204.7HBS,抗拉强度、屈服强度和伸长率分别为764.0,749.0MPa和7.2%。
采用水热合成法制备ZnO纳米棒及RGO/ZnO纳米棒复合材料。研究不同含量的RGO对RGO/ZnO纳米棒复合材料光催化活性的影响。采用X射线衍射仪(XRD)、场发射电子显微镜(FESEM)、光电子能谱仪(XPS)及漫反射紫外-可见吸收光谱(UV-Vis)检测手段对RGO/ZnO进行表征。结果显示:RGO与ZnO纳米棒成功复合。加入GO的含量不同,获得的RGO/ZnO样品在可见光区域的吸光度值不同。以甲基橙作为模拟污染物的光催化结果表明,RGO/ZnO复合材料具有高的紫外-可见光光降解效率,加入GO与ZnO的质量比为3%时,样品紫外-可见光光催化性能最佳,120min内甲基橙基本可以完全降解;且在波长大于400nm可见光照射下,RGO/ZnO具有一定的可见光活性,180min内其降解甲基橙效率最大可达26.2%。同时,RGO/ZnO具有较好的光稳定性。
分别以蒸馏水、无水乙醇为过程控制剂,采用机械球磨法制备壳聚糖微细粉体,研究过程控制剂的种类和添加量对其产率、粒径分布、微观形貌、黏均分子量、化学结构、结晶结构以及热性能的影响。结果表明:采用无水乙醇为过程控制剂效果最好,当乙醇用量为0.75mL/g时,壳聚糖粉体的产率最高,从25%提高到94.7%,而且得到的壳聚糖粉体的粒径分布集中,D50为824nm,D90为1629nm。采用乙醇为过程控制剂制备的壳聚糖微细粉体未发生衍生化反应,但是其黏均分子量下降了23%,结晶结构受到部分破坏,热稳性变差。
使用水热法成功制备Zr2P2WO12粉末,采用真空热压烧结方法制备接近致密的Zr2P2WO12/Fe-Ni复合材料。使用X射线衍射、扫描电镜及热膨胀测试仪对制备的Zr2P2WO12及其Fe-Ni复合材料进行性能测试和表征,使用维氏硬度计测试复合材料的硬度,使用排水法表征复合材料的密度。结果表明:水热法制备的Zr2P2WO12粉为高纯度的单相Zr2P2WO12,颗粒规则,晶粒尺寸约为50nm;随Zr2P2WO12含量的增加,Zr2P2WO12/Fe-Ni复合材料的硬度增加,而密度和致密度则降低,在25~800℃区间内平均热膨胀系数从13.5×10-6/℃降低到8.6×10-6/℃。
以离子液体1-丁基-3-甲基咪唑氯盐BMIMCl为反应介质,钛酸丁酯作为钛前驱物,采用溶胶-凝胶法制备TiO2,并将其负载在纤维素上,制备纤维素/TiO2复合材料。采用单因素实验对反应条件进行优化,用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、紫外光漫反射(DRS)及热分析仪(TG)对复合材料结构及性能进行表征。以紫外光为光源,研究纤维素/TiO2复合材料对甲基橙水溶液的光催化降解性能。结果表明:采用离子液体BMIMCl作为反应介质,可在常温常压下制备出高活性的光催化复合材料;TiO2负载于纤维素后的复合材料对甲基橙的降解率在80min达到97.09%,与未负载的纳米TiO2光催化剂相比,复合材料对甲基橙的降解率提高了37%。纤维素/TiO2复合材料重复利用4次后对甲基橙的降解率仍能达到62.66%。
采用传统粉末冶金法,分别用真空烧结和低压烧结工艺制备出一系列WC-1.0TiC-3.1TaC-4.5Co硬质合金样品。利用光学显微镜、扫描电镜与能谱仪对合金微观组织结构特征进行观察与分析。结果表明:提高真空工艺烧结温度或采用低压烧结工艺,能使合金内部的显微孔隙、钴池减少;低压烧结制备的合金WC晶粒度小于真空烧结制备的合金WC晶粒度,合金中易出现WC晶粒异常长大现象。
采用第一性原理研究Cu,Ag,Au掺杂单层MoS2的键长畸变、能带结构和态密度。探讨Cu,Ag,Au掺杂对单层MoS2电子结构的影响。结果表明:Cu,Ag,Au在S位掺杂的杂质能都低于在Mo位掺杂的杂质能,其在S位掺杂的体系的稳定性强于在Mo位掺杂的体系。在S位掺杂时,杂质与最近邻的Mo,S原子的键长都发生了畸变,畸变率最大的是dAu-Mo,达23.8%。与单层MoS2的超胞相比,掺杂体系的禁带中出现了4条新能级,导带和价带的能量向低能区移动。杂质原子周围存在着电荷聚集,同时也存在电荷损失。
在预制坯中加入TiO2粉末,利用挤压铸造法制备Al2O3颗粒增强1065钢基复合材料,研究TiO2对复合材料组织与力学性能的影响。结果表明:TiO2使基体与Al2O3的结合界面形成了TiO2、Al2TiO5界面层;添加TiO2的复合材料硬度和三点弯曲强度分别为39.0HRC,743.94MPa,比未添加TiO2的复合材料分别提高了10.0%,26.4%;断口扫描表明,添加TiO2的复合材料界面结合良好无裂纹,Al2O3颗粒表现为穿晶断裂。说明加入的TiO2改善了Al2O3P/钢基复合材料界面结合强度,提高了复合材料力学性能。
依据有限元仿真软件ABAQUS,建立碳纤维增强型复合材料(CFRP)层合板雷击损伤热-电耦合有限元仿真模型。利用叠加温度场的方法来近似表示内部受损状态,通过对比实验验证热-电耦合仿真方法的正确性与有效性。利用回归统计分析技术,定量分析雷电参数与CFRP雷击损伤的相关性,并绘制相关曲线。结果表明:雷电流比能是决定CFRP雷击损伤的关键因素,纤维破坏面积、分层面积与比能具有线性相关性,树脂破坏面积、分层厚度与比能具有对数相关性。
通过对T300/5405复合材料层板进行低速冲击后的压-压疲劳实验,研究含不同冲击损伤层板的压缩性能与其在多级应力水平下的疲劳寿命与损伤扩展,并讨论冲击能量、应力水平、损伤扩展对层板疲劳寿命的影响。结果表明:冲击损伤明显降低层板的剩余强度;在低应水平下,冲击能量越大,含冲击损伤层板的疲劳寿命越小;疲劳实验中损伤经历平稳扩展和快速扩展两个阶段,其中平稳扩展阶段约占总体寿命的80%,快速扩展阶段约占总体寿命的20%,损伤扩展速率随着应力水平降低而减小。
氧化石墨烯(Graphene Oxide,GO)以其独特的二维纳米片层结构、超大的比表面积和亲水极性界面,使其在功能复合材料领域有着广泛的应用和发展前景。本文综述了近年来GO复合材料在增强增韧、吸附分离、光催化及生物医药等方面的研究现状及进展,介绍了GO调控高分子材料及水泥基体形成规整有序的微观结构形貌而产生显著的增强增韧效果的机理,分析了GO复合材料在吸附、催化、生物医药等方面作用原理,指出了GO增强增韧复合材料、GO吸附复合材料和GO光催化复合材料的应用前景和发展趋势。
超疏水性和超亲水性是表面润湿性的两个极端,受表面的形貌和化学组成的共同作用。通过施加外界刺激可以改变表面形貌和/或表面化学组成,实现表面润湿性在超疏水性和超亲水性之间的切换。本文综述了润湿性可切换表面的最新研究进展。概述了以光照、温度、pH值、溶剂、电势等作为外界刺激以及表面反离子切换实现表面润湿性在超疏水和超亲水之间切换的方法。介绍了由于非对称的润湿性而导致液体定向传递的现象。展望了可控润湿性表面发展趋势,通过调控表面微米-纳米多级粗糙结构和化学组成,可实现在各种基材表面实现超疏水和超亲水之间的切换。