Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 147-153    DOI: 10.11868/j.issn.1001-4381.2017.000002
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Fe52T2(T=Cr,Mn,Co,Ni)合金bcc与fcc相结构的第一性原理研究
董雪1, 马爽1, 武晓霞2, 那日苏1
1. 内蒙古师范大学 物理与电子信息学院, 呼和浩特 010022;
2. 内蒙古科技大学 理学院, 内蒙古 包头 014010
First principles on bcc and fcc phases structure of Fe52T2 (T=Cr,Mn,Co,Ni) alloys
DONG Xue1, MA Shuang1, WU Xiao-xia2, NA Ri-su1
1. College of Physical and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China;
2. College of Science, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
全文: PDF(2560 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 运用基于密度泛函理论的第一性原理方法研究稀释掺杂的Fe52T2(T=Cr,Mn,Co,Ni)合金铁磁bcc相和反铁磁fcc相结构的晶格参数、磁性和两相的相对稳定性。结果表明:晶格参数和体模量随掺杂元素d壳层电子个数的变化关系不能用简单的d能带填充图像解释,说明FeT合金中存在较强的磁-结构耦合效应。FeT合金的铁磁bcc相比反铁磁fcc相稳定。反铁磁相呈四方结构,晶格常数c/a比值约为1.07,此相结构可能是一个亚稳态。晶格结构的变化引起电子的重新分布,导致不同磁结构和局域原子磁矩。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董雪
马爽
武晓霞
那日苏
关键词 Fe52T2合金bcc与fcc相结构相稳定性第一性原理计算    
Abstract:The lattice parameter, local magnetic moment and the relative stability of ferromagnetic bcc and antiferromagnetic fcc phases structure of Fe52T2(T=Cr,Mn,Co,Ni) alloys were studied by first principles method based on density functional theory. The results show that the dependence of lattice parameters and bulk modulus on the d shell electron number of dopant elements cannot be simply explained by the d band filling image. This fact suggests that there is a strong magneto-structural coupling effect in FeT alloys. For FeT alloys, the ferromagnetic bcc phase is more stable compared with the fcc phase. The antiferromagnetic phase is tetragonal with c/a ratio about 1.07, and this phase structure can be a metastable state. The change of lattice structure leads to redistribution of electrons, and thus results in different magnetic order and local magnetic moment.
Key wordsFe52T2 alloy    bcc and fcc phase structure    phase stability    first principles calculation
收稿日期: 2016-12-30      出版日期: 2019-03-12
中图分类号:  O41  
通讯作者: 那日苏(1981-),男,教授,博士,从事凝聚态理论方面的研究工作,联系地址:内蒙古呼和浩特市赛罕区昭乌达路81号内蒙古师范大学物理与电子信息学院(010022),E-mail:nars@imnu.edu.cn     E-mail: nars@imnu.edu.cn
引用本文:   
董雪, 马爽, 武晓霞, 那日苏. Fe52T2(T=Cr,Mn,Co,Ni)合金bcc与fcc相结构的第一性原理研究[J]. 材料工程, 2019, 47(3): 147-153.
DONG Xue, MA Shuang, WU Xiao-xia, NA Ri-su. First principles on bcc and fcc phases structure of Fe52T2 (T=Cr,Mn,Co,Ni) alloys. Journal of Materials Engineering, 2019, 47(3): 147-153.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000002      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/147
[1] TSYMBAL E Y. Spintronics:electric toggling of magnets[J]. Nature Materials,2011,11(1):12-14.
[2] GERHARD L,YAMADA T K,BALASHOV T,et al. Magnetoelectric coupling at metal surfaces[J]. Nature Nanotechnology,2010,5(11):792-797.
[3] GERHARD L,WESSELINK R,OSTANIN S,et al. Dynamics of electrically driven martensitic phase transitions in Fe nanoislands[J].Physical Review Letters,2013,111:167601.
[4] 梁基谢夫. 金属二元系相图手册[M]. 郭青蔚,译.北京:化学工业出版社,2008:408-597. ПЛЯКИЩЕВ H. The phase diagrams of metallic binary systems[M]. Translated by GUO Q W. Beijing:Chemical Industry Press,2008:408-597.
[5] MEDVEDEVA N I,VAN A D,MEDVEDEVA J E. The effect of carbon distribution on the manganese magnetic moment in bcc Fe-Mn alloy[J]. Journal of Physics Condensed Matter,2011,23:326003.
[6] FOY E,ANDRIEU S,FINAZZI M,et al. Magnetic instabilities in fcc FexNi1-x thin film[J]. Physical Review B,2003,68:094414.
[7] LI X Y,KONG L T,LIU B X. Enhanced magnetic moment of Fe in fcc-structured Fe-Ag and Fe-Au alloys synthesized by ion-beam manipulation[J]. Physical Review B,2005,72:054118.
[8] GEBHARDT T,MUSIC D,EKHOLM M,et al. The influence of additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys[J]. Journal of Physics Condensed Matter,2011,23:246003-246009.
[9] 乔瑞芳,毕洪运,陈玉喜. Ti,Nb和W复合强化超纯铁素体不锈钢的高温析出行为[J]. 材料工程,2016,44(5):22-28. QIAO R F,BI H Y,CHEN Y X. Precipitation behavior of (Ti, Nb, W)-modified ferritic stainless steel during high-temperature aging[J]. Journal of Materials Engineering,2016,44(5):22-28.
[10] 庞启航,唐荻,赵征志,等.低活化钢析出相热力学研究[J]. 材料工程,2016,44(7):37-42. PANG Q H,TANG D,ZHAO Z Z,et al. Thermodynamic analysis on precipitated phases in low activation steel[J]. Journal of Materials Engineering,2016,44(7):37-42.
[11] 许军,李会芳,程从前,等.基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程,2017,45(8):96-101. XU J,LI H F,CHENG C Q,et al. High temperature performance evaluation of as-serviced 25Cr35Ni type heat-resistant steel based on stress relaxation tests[J]. Journal of Materials Engineering,2017,45(8):96-101.
[12] OKATOV S V,KUZNETSOV A R,GORNOSTYREVYU N,et al. Effect of magnetic state on the gamma-alpha transition in iron:first-principle calculations of the Bain transformation path[J]. Physical Review B,2009,79:094111.
[13] MIRZOEV A,YALALOV M,MIRZAEV D A. Energy of mixing and magnetic state of components of Fe-Mn alloys:a first-principles calculation for the ground state[J]. Physics of Metals & Metallography,2006,101:341-348.
[14] GLAUBITZ B,BUSCHHORN S,BRVSSING F,et al. Development of magnetic moments in Fe1-xNix alloys[J]. Journal of Physics Condensed Matter,2011,23:254110.
[15] ORTIZ-CHI F,AGUAYO A,De COSS R. Effects of Co doping on the metamagnetic states of the ferromagnetic fcc Fe-Co alloy[J]. Journal of Physics Condensed Matter,2013,25:026001-026009.
[16] WANG W Y,SHANG S L,WANG Y,et al. Lattice distortion induced anomalous ferromagnetism and electronic structure in FCC Fe and Fe-TM (TM=Cr, Ni, Ta and Zr) alloys[J]. Materials Chemistry & Physics,2015,162:748-756.
[17] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review B,1965,136:864.
[18] KOHN W,SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review A,1965,40:1133-1138.
[19] KRESSE G,HANFNER J. Ab initio molecular dynamics of liquid metals[J]. Physical Review B,1993,47:558.
[20] PERDEW J P,BURKE K,ERNZERHOF M. Errata:generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865-3868.
[21] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B,1994,50(24):17953-17979.
[22] MONKHORST H J,PACK J D. On special points for Brillouin zone integrations[J]. Physical Review B,1976,13:5188-5192.
[23] MURNAGHAN F D. The compressibility of media under extreme pressures[J]. Proceedings of the National Academy of Science of the United States of America,1944,30(9):244-247.
[24] ZHANG H L,PUNKKINEN M P J,JOHANSSON B,et al. Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory[J]. Physical Review B,2010,81(18):184105.
[25] SÖDERLIND P,AHUJA R,ERIKSSON O,et al. Crystal structure and elastic-constant anomalies in the magnetic 3d transition metals[J]. Physical Review B,1994,50(9):5918-5927.
[26] 金汉民.磁性物理[M]. 北京:科学出版社,2013:65-69. JIN H M. Magnetic physics[M]. Beijing:Science Press,2013:65-69.
[27] JANAK J F,WILLIAMS A R. Ground-state thermomechanical properties of some cubic elements in the local-density formalism[J]. Physical Review B,1976,12:1257-1261.
[28] ANTROPOV V P,KATSNELSON M I,Van SCHILFGAARDE M,et al. Ab initio spin dynamics in magnets[J]. Physical Review Letters,1995,75:729-732.
[29] BOUKHVALOV D W,GORNOSTYREV Y N,KATSNELSON M I,et al. Magnetism and local distortions near carbon impurity in gamma-iron[J]. Physical Review Letters,2007,99:247205.
[30] LIN W,XU J H,FREEMAN A J. Electronic structure, cohesive properties, and phase stability of Ni3V,Co3V,and Fe3V[J]. Physical Review B,1992,45:10863-10871.
[1] 孟庆坤, 赵新青. 微米级Co微粒的相稳定性研究[J]. 材料工程, 2013, (2): 40-44,49.
[2] 任晓, 周文龙, 陈国清, 吴承伟, 黄朝晖, 张俊善. 稳恒强磁场在固态相变中应用的研究进展[J]. 材料工程, 2009, 0(3): 82-86.
[3] 刘瑛, 邓波, 陈淦生, 仲增墉. 应用d电子合金设计理论优化GH907合金组织及持久性能[J]. 材料工程, 1997, 0(7): 23-25,29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn