Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 142-148    DOI: 10.11868/j.issn.1001-4381.2017.000006
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
非均相固化体系对复合材料树脂微观力学均匀性的影响
郭妙才1,2, 洪旭辉1,2, 李亚锋1,2
1. 中航工业复合材料技术中心, 北京 101300;
2. 中国航发 北京航空材料研究院 先进复合材料重点实验室, 北京 100095
Effect of Heterogeneous Resin Curing Agent on Micro-mechanical Uniformity of Resin Matrix of Composites
GUO Miao-cai1,2, HONG Xu-hui1,2, LI Ya-feng1,2
1. AVIC Composite Technology Center, Beijing 101300, China;
2. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3577 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用热熔法制备预浸料涉及熔融树脂对纤维层的渗透,对于固化体系为非均相的环氧树脂基体,制备大厚度预浸料可能会受到固化剂分布不均的影响。利用纳米力学方法分别研究采用小厚度玻璃纤维预浸料制备的复合材料和通过树脂真空吸注工艺制备的玻璃纤维复合材料的内部树脂的微观力学均匀性。结果表明:由小厚度预浸料制备的复合材料,其内部树脂各区域具有较好的微观力学均匀性,各区域树脂的纳米硬度和耐磨损性基本相同,各铺层中心和边缘接近;通过树脂真空吸注工艺制备的复合材料则表现出明显的层状分布,固化剂和促进剂颗粒在纤维层外部富集,纤维层外层的树脂具有较高的纳米硬度和耐磨损性,而在纤维层内0.4mm深后的树脂纳米硬度下降,耐磨损性下降,纤维层内部的树脂纳米硬度很低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭妙才
洪旭辉
李亚锋
关键词 潜伏型固化剂环氧树脂复合材料纳米压痕微观力学均匀性    
Abstract:Preparation of prepregs by hot melt method is generally involved the infiltration of resin. For the epoxy resin with a heterogeneous curing system, the preparation of large thickness prepregs may be affected by the uneven distribution of curing agent. A nanomechanical method was used to study the micro-mechanical uniformity of the resin matrix of the composites prepared by thin thickness glass fibre prepregs and the glass fibre reinforced composites prepared by resin vacuum suction technology. The results show that to the composites prepared by thin thickness prepregs, the resin exhibits good micro-mechanical uniformity, the nano-hardness and wear properties of the resin at the different regions of the composite cross-section have a good uniformity. The composites prepared by resin vacuum suction method exhibits obvious layered distribution, the particles of the curing agent and accelerator are enriched at the outer surface of the fiber layer. The resin at the outer layer of the fibre layer has higher nano hardness and wear resistance, while to the resin about 0.4mm inside the fiber layer, its hardness goes down, a very low nano hardness of the resin deeply inside the fiber layer is observed.
Key wordslatent curing agent    epoxy resin    composites    nano-indentation    micro-mechanical uniformity
收稿日期: 2016-12-31      出版日期: 2018-10-17
中图分类号:  O631.2  
通讯作者: 郭妙才(1980-),男,高级工程师,博士,复合材料专业,联系地址:北京市81信箱3分箱(100095),E-mail:guo_miaocai@sina.cn     E-mail: guo_miaocai@sina.cn
引用本文:   
郭妙才, 洪旭辉, 李亚锋. 非均相固化体系对复合材料树脂微观力学均匀性的影响[J]. 材料工程, 2018, 46(10): 142-148.
GUO Miao-cai, HONG Xu-hui, LI Ya-feng. Effect of Heterogeneous Resin Curing Agent on Micro-mechanical Uniformity of Resin Matrix of Composites. Journal of Materials Engineering, 2018, 46(10): 142-148.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000006      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/142
[1] GARG M, SHARMA S, MEHTA R. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites[J]. Composites Part A, 2015, 76:92-101.
[2] PETERSEN M R, CHEN A, ROLL M, et al. Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler[J]. Composites Part B, 2015, 78:109-121.
[3] GAO X, GILLESPIE JR J W, JENSEN R E, et al. Effect of fiber surface texture on the mechanical properties of glass fiber reinforced epoxy composite[J]. Composites Part A, 2015, 74:10-17.
[4] 郑亚萍, 陈伟, 李江红, 等. RTM和预浸料共固化树脂体系界面层特性[J]. 复合材料学报, 2013, 30(3):35-38. ZHENG Y P, CHEN W, LI J H, et al. Interface properties of RTM and prepreg process co-curing system[J]. Acta Materiae Compositae Sinica, 2013, 30(3):35-38.
[5] 孟季茹, 梁国正, 何洋, 等. 聚苯醚改性环氧树脂基覆铜板的研制[J]. 复合材料学报, 2003, 20(1):74-78. MENG J R, LIANG G Z, HE Y, et al. Preparation of the copper clad laminate based on modified epoxy with poly(2,6-dimethyl-1,4-phenylene ether)[J]. Acta Materiae Compositae Sinica, 2003, 20(1):74-78.
[6] JACKSON M L, LOVE B J. Dicyandiamide precipitation in epoxy solutions and latex dispersions:threshold concentration analysis using a two-stage drying model[J]. Polymer, 2004, 45:7229-7238.
[7] 陈绍杰, 朱珊. 大丝束碳纤维应用研究[J]. 飞机设计, 2004(3):22-25. CHEN S J, ZHU S. Application study of large-tow carbon fiber[J]. Aircraft Design, 2004(3):22-25.
[8] VANLANDINGHAM M R, VILLARRUBIA J S, GUTHRIE W F, et al. Nanoindentation of polymers:an overview[J]. Macromolecular Symposia, 2001, 167:15-43.
[9] MOLAZEMHOSSEINI A, TOURANI H, NAIMI-JAMAL M R, et al. Nanoindentation and nano-scratching responses of PEEK based hybrid composites reinforced with short carbon fibers and nano-silica[J]. Polymer Testing, 2013, 32:525-534.
[10] CHEN J J. On the determination of coating toughness during nanoindentation[J]. Surface and Coatings Technology, 2012, 206:3064-3068.
[11] YEAGER J D, RAMOS K J, SINGH S, et al. Nanoindentation of explosive polymer composites to simulate deformation and failure[J]. Materials Science and Technology, 2012, 28:1147-1155.
[12] GUO Y, LI Y. Quasi-static/dynamic response of SiO2-epoxy nanocomposites[J]. Materials Science and Engineering:A, 2007, 458:330-335.
[13] LEE S H, WANG S Q, PHARR G M, et al. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis[J]. Composites Part A, 2007, 38:1517-1524.
[14] LIU X D, ZHAO C H, SUDO A, et al. Storage stability and curing behavior of epoxy-dicyandiamide systems with carbonyldiimida-zole-Cu(Ⅱ) complexes as the accelerator[J]. Journal of Polymer Science Part A, 2013, 51:3470-3476.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[3] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[4] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[5] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[14] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[15] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn