Please wait a minute...
材料工程  2018, Vol. 46 Issue (8): 43-50    DOI: 10.11868/j.issn.1001-4381.2017.000022
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良
中国石油大学(华东) 重质油国家重点实验室, 山东 青岛 266580
Effect of Inducing Agents on Particles Distribution, Structure and Photocatalytic Performance of TiO2 Embedded on Reduced Graphene Oxide
ZHOU Tie-lu, LIU Hui-e, CHEN Shuang, DING Chuan-qin, QI Xuan-liang
State Key Laboratory of Heavy Oil Processing, China University of Petroleum(East of China), Qingdao 266580, Shandong, China
全文: PDF(4646 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用一步水热法原位诱导合成TiO2/石墨烯复合催化剂,通过X射线衍射(XRD),傅里叶变换红外光谱(FT-IR),扫描电镜(SEM),透射电镜(TEM),拉曼光谱(Raman),紫外可见吸收光谱(UV-Vis)表征复合催化剂的晶体结构、官能团强弱、微观形貌和光学特性。以葡萄糖(glucose)、十二烷基硫酸钠(SDS)、聚乙烯吡咯烷酮(PVP)为诱导助剂,研究其对复合催化剂形貌和光催化降解甲基橙(MO)活性的影响。结果表明:以葡萄糖和十二烷基硫酸钠为诱导助剂合成的复合催化剂活性最高,紫外光照射30min,MO降解率可达92%,而商用P25降解率达到90%需要120min,同时以聚乙烯吡咯烷酮为诱导助剂合成的复合催化剂和TiO2/石墨烯自组装形成的复合材料光催化活性差别不大。
E-mail Alert
关键词 诱导助剂光催化TiO2石墨烯复合材料    
Abstract:The TiO2/reduced graphene oxide composite, synthesized by a facile one-pot hydrothermal method, was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectrum, and ultraviolet-visible (UV-Vis) spectroscopy to observe the crystal structure, intensity of functional group, microstructure and optical property. The composite material was synthesized by using glucose, sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP) as inducing agents, respectively. The structure and photocatalytic activity for degradation of methyl orange (MO) of the composite were investigated. The results reveal that the composite induced by glucose and SDS shows the highest activity, whose degradation rate can be up to 92% in 30min. However, 120 minutes is necessary for the commercial P25 to remove 90% methyl orange (MO). Compared with the composite prepared by self-assembly with no inducing agent, there are no obvious difference existing in the one induced by polyvinylpyrrolidone (PVP) in terms of photocatalytic reactivity.
Key wordsinducing agent    photocatalysis    TiO2    graphene    composite material
收稿日期: 2017-01-03      出版日期: 2018-08-17
中图分类号:  O643  
通讯作者: 刘会娥(1972-),女,教授,博士,研究方向为碳纳米材料制备及其在水处理中的应用研究,联系地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东)化学工程学院(266580),     E-mail:
周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
ZHOU Tie-lu, LIU Hui-e, CHEN Shuang, DING Chuan-qin, QI Xuan-liang. Effect of Inducing Agents on Particles Distribution, Structure and Photocatalytic Performance of TiO2 Embedded on Reduced Graphene Oxide. Journal of Materials Engineering, 2018, 46(8): 43-50.
链接本文:      或
[1] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Reviews, 2014, 114(19):9919-9986.
[2] YAN X, CHEN X. Titanium dioxide nanomaterials[M]//Encyclopedia of Inorganic and Bioinorganic Chemistry. New York:John Wiley & Sons Ltd, 2015:839-851.
[3] XING M, WU Y, ZHANG J, et al. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO[J]. Nanoscale, 2010, 2(7):1233-1239.
[4] XING M Y, QI D Y, ZHANG J L, et al. One-step hydrothermal method to prepare carbon and lanthanum co-doped TiO2 nanocrystals with exposed {001} facets and their high UV and visible-light photocatalytic activity[J]. Chemistry A European Journal, 2011, 17(41):11432-11436.
[5] 曹文斌, 许军娜, 刘文秀,等. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程, 2015, 43(3):83-90. CAO W B, XU J N, LIU W X, et al. Research progress on visible light active nitrogen doped nano-TiO2[J]. Journal of Materials Engineering, 2015, 43(3):83-90.
[6] HE C, TIAN B, ZHANG J. Thermally stable SiO2 -doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity[J]. Journal of Colloid and Interface Science, 2010, 344(2):382-389.
[7] CHEN X, LU D,LIN S. Preparation and properties of sulfur-doped visible-light response S-TiO2/SiO2 photocatalyst[J]. Chinese Journal of Catalysis, 2012, 33(6):993-999.
[8] DONG R, TIAN B, ZHANG J, et al. AgBr@Ag/TiO2 core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability[J]. Catalysis Communications, 2013, 38(15):16-20.
[9] CHENG C, AMINI A, ZHU C, et al. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures[J]. Scientific Reports, 2014, 4(8):4181.
[10] LI W, ZHANG M, DU Z, et al. Photocatalytic degradation of lignin model compounds and kraft pine lignin by CdS/TiO2 under visible light irradiation[J]. BioResources, 2015, 10(1):1245-1259.
[11] WU Y, XING M, ZHANG J. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity[J]. Journal of Hazardous Materials, 2011, 192(1):368-373.
[12] LIU Y, XING M, ZHANG J. Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity[J]. Chinese Journal of Catalysis, 2014, 35(9):1511-1519.
[13] XING M, FANG W, NASIR M, et al. Self-doped Ti3+ -enhanced TiO2 nanoparticles with a high-performance photocatalysis[J]. Journal of Catalysis, 2013, 297(1):236-243.
[14] 陈昱, 王京钰, 李维尊,等. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3):103-113. CHEN Y, WANG J Y, LI W Z, et al. Research progress in TiO2-based photocatalysis material[J]. Journal of Materials Engineering, 2016, 44(3):103-113.
[15] LI Z, WANG J, LIU X, et al. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(10):3397-3403.
[16] 王婵媛, 王希晰, 曹茂盛. 轻质石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2016, 44(10):109-118. WANG C Y, WANG X X, CAO M S. Progress in research on lightweight graphene-based EMI shielding materials[J]. Journal of Materials Engineering, 2016, 44(10):109-118.
[17] XIN X, ZHOU X, WU J, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano, 2012, 6(12):11035-11043.
[18] HUANG Q, TIAN S, ZENG D, et al. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond[J]. ACS Catalysis, 2013, 3(7):1477-1485.
[19] JIANG B, TIAN C, ZHOU W, et al. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity[J]. Chemistry-A European Journal, 2011, 17(30):8379-8387.
[20] JIANG T, TAO Z, JI M, et al. Preparation and photocatalytic property of TiO2-graphite oxide intercalated composite[J]. Catalysis Communications, 2012, 28(44):47-51.
[21] GU L, ZHANG H, JIAO Z, et al. Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts[J]. RSC Advances, 2016, 6(71):67039-67048.
[22] QIU B, XING M, ZHANG J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(16):5852-5855.
[23] WANG M, CAI L, JIN Q, et al. One-pot composite synthesis of three-dimensional graphene oxide/poly(vinyl alcohol)/TiO2 microspheres for organic dye removal[J]. Separation and Purification Technology, 2017, 172:217-226.
[24] WANG D, CHOI D, LI J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACS Nano, 2009, 3(4):907-914.
[25] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
[26] WANG J, HAN Z. The combustion behavior of polyacrylate ester/graphite oxide composites[J]. Polymers for Advanced Technologies, 2006, 17(4):335-340.
[27] LIU L, AN M, YANG P, et al. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries[J]. Scientific Reports, 2015, 5:9055.
[28] SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angewandte Chemie International Edition, 2003, 42(40):4908-4911.
[29] ZHANG Z, XIAO F, GUO Y, et al. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities[J]. ACS Applied Materials & Interfaces, 2013, 5(6):2227-2233.
[30] XIANG Q, YU J, JARONIEC M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets[J]. Nanoscale, 2011, 3(9):3670-3678.
[31] LI X, WU D, SHENG H, et al. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance[J]. ACS Applied Materials & Interfaces, 2013, 5(9):3764-3769.
[32] BAI X, WANG L, ZONG R, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization[J]. Langmuir, 2013, 29(9):3097-3105.
[33] LI Y, YANG J, ZHENG S, et al. One-pot synthesis of 3D TiO2-reduced graphene oxide aerogels with superior adsorption capacity and enhanced visible-light photocatalytic performance[J]. Ceramics International, 2016,42(16):19091-19096.
[34] CAI J, LIU W, LI Z. One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis[J]. Applied Surface Science, 2015, 358:146-151.
[35] QIU B, ZHOU Y, MA Y, et al. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis[J]. Scientific Reports, 2015, 5:8591.
[36] PAN L, ZHU X D, XIE X M, et al. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets:hierarchically nanoengineered ternary heterostructures for high-rate lithium storage[J]. Advanced Functional Materials, 2015, 25(22):3341-3350.
[37] ZHOU K, ZHU Y, YANG X, et al. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity[J]. New Journal of Chemistry, 2011, 35(2):353-359.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[3] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[4] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[5] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[6] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[7] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[8] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[9] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[10] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[11] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[12] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[13] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[14] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[15] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持