Please wait a minute...
材料工程  2018, Vol. 46 Issue (8): 43-50    DOI: 10.11868/j.issn.1001-4381.2017.000022
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良
中国石油大学(华东) 重质油国家重点实验室, 山东 青岛 266580
Effect of Inducing Agents on Particles Distribution, Structure and Photocatalytic Performance of TiO2 Embedded on Reduced Graphene Oxide
ZHOU Tie-lu, LIU Hui-e, CHEN Shuang, DING Chuan-qin, QI Xuan-liang
State Key Laboratory of Heavy Oil Processing, China University of Petroleum(East of China), Qingdao 266580, Shandong, China
全文: PDF(4646 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用一步水热法原位诱导合成TiO2/石墨烯复合催化剂,通过X射线衍射(XRD),傅里叶变换红外光谱(FT-IR),扫描电镜(SEM),透射电镜(TEM),拉曼光谱(Raman),紫外可见吸收光谱(UV-Vis)表征复合催化剂的晶体结构、官能团强弱、微观形貌和光学特性。以葡萄糖(glucose)、十二烷基硫酸钠(SDS)、聚乙烯吡咯烷酮(PVP)为诱导助剂,研究其对复合催化剂形貌和光催化降解甲基橙(MO)活性的影响。结果表明:以葡萄糖和十二烷基硫酸钠为诱导助剂合成的复合催化剂活性最高,紫外光照射30min,MO降解率可达92%,而商用P25降解率达到90%需要120min,同时以聚乙烯吡咯烷酮为诱导助剂合成的复合催化剂和TiO2/石墨烯自组装形成的复合材料光催化活性差别不大。
E-mail Alert
关键词 诱导助剂光催化TiO2石墨烯复合材料    
Abstract:The TiO2/reduced graphene oxide composite, synthesized by a facile one-pot hydrothermal method, was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectrum, and ultraviolet-visible (UV-Vis) spectroscopy to observe the crystal structure, intensity of functional group, microstructure and optical property. The composite material was synthesized by using glucose, sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP) as inducing agents, respectively. The structure and photocatalytic activity for degradation of methyl orange (MO) of the composite were investigated. The results reveal that the composite induced by glucose and SDS shows the highest activity, whose degradation rate can be up to 92% in 30min. However, 120 minutes is necessary for the commercial P25 to remove 90% methyl orange (MO). Compared with the composite prepared by self-assembly with no inducing agent, there are no obvious difference existing in the one induced by polyvinylpyrrolidone (PVP) in terms of photocatalytic reactivity.
Key wordsinducing agent    photocatalysis    TiO2    graphene    composite material
收稿日期: 2017-01-03      出版日期: 2018-08-17
中图分类号:  O643  
通讯作者: 刘会娥(1972-),女,教授,博士,研究方向为碳纳米材料制备及其在水处理中的应用研究,联系地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东)化学工程学院(266580),     E-mail:
周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
ZHOU Tie-lu, LIU Hui-e, CHEN Shuang, DING Chuan-qin, QI Xuan-liang. Effect of Inducing Agents on Particles Distribution, Structure and Photocatalytic Performance of TiO2 Embedded on Reduced Graphene Oxide. Journal of Materials Engineering, 2018, 46(8): 43-50.
链接本文:      或
[1] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Reviews, 2014, 114(19):9919-9986.
[2] YAN X, CHEN X. Titanium dioxide nanomaterials[M]//Encyclopedia of Inorganic and Bioinorganic Chemistry. New York:John Wiley & Sons Ltd, 2015:839-851.
[3] XING M, WU Y, ZHANG J, et al. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO[J]. Nanoscale, 2010, 2(7):1233-1239.
[4] XING M Y, QI D Y, ZHANG J L, et al. One-step hydrothermal method to prepare carbon and lanthanum co-doped TiO2 nanocrystals with exposed {001} facets and their high UV and visible-light photocatalytic activity[J]. Chemistry A European Journal, 2011, 17(41):11432-11436.
[5] 曹文斌, 许军娜, 刘文秀,等. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程, 2015, 43(3):83-90. CAO W B, XU J N, LIU W X, et al. Research progress on visible light active nitrogen doped nano-TiO2[J]. Journal of Materials Engineering, 2015, 43(3):83-90.
[6] HE C, TIAN B, ZHANG J. Thermally stable SiO2 -doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity[J]. Journal of Colloid and Interface Science, 2010, 344(2):382-389.
[7] CHEN X, LU D,LIN S. Preparation and properties of sulfur-doped visible-light response S-TiO2/SiO2 photocatalyst[J]. Chinese Journal of Catalysis, 2012, 33(6):993-999.
[8] DONG R, TIAN B, ZHANG J, et al. AgBr@Ag/TiO2 core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability[J]. Catalysis Communications, 2013, 38(15):16-20.
[9] CHENG C, AMINI A, ZHU C, et al. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures[J]. Scientific Reports, 2014, 4(8):4181.
[10] LI W, ZHANG M, DU Z, et al. Photocatalytic degradation of lignin model compounds and kraft pine lignin by CdS/TiO2 under visible light irradiation[J]. BioResources, 2015, 10(1):1245-1259.
[11] WU Y, XING M, ZHANG J. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity[J]. Journal of Hazardous Materials, 2011, 192(1):368-373.
[12] LIU Y, XING M, ZHANG J. Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity[J]. Chinese Journal of Catalysis, 2014, 35(9):1511-1519.
[13] XING M, FANG W, NASIR M, et al. Self-doped Ti3+ -enhanced TiO2 nanoparticles with a high-performance photocatalysis[J]. Journal of Catalysis, 2013, 297(1):236-243.
[14] 陈昱, 王京钰, 李维尊,等. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3):103-113. CHEN Y, WANG J Y, LI W Z, et al. Research progress in TiO2-based photocatalysis material[J]. Journal of Materials Engineering, 2016, 44(3):103-113.
[15] LI Z, WANG J, LIU X, et al. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(10):3397-3403.
[16] 王婵媛, 王希晰, 曹茂盛. 轻质石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2016, 44(10):109-118. WANG C Y, WANG X X, CAO M S. Progress in research on lightweight graphene-based EMI shielding materials[J]. Journal of Materials Engineering, 2016, 44(10):109-118.
[17] XIN X, ZHOU X, WU J, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano, 2012, 6(12):11035-11043.
[18] HUANG Q, TIAN S, ZENG D, et al. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond[J]. ACS Catalysis, 2013, 3(7):1477-1485.
[19] JIANG B, TIAN C, ZHOU W, et al. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity[J]. Chemistry-A European Journal, 2011, 17(30):8379-8387.
[20] JIANG T, TAO Z, JI M, et al. Preparation and photocatalytic property of TiO2-graphite oxide intercalated composite[J]. Catalysis Communications, 2012, 28(44):47-51.
[21] GU L, ZHANG H, JIAO Z, et al. Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts[J]. RSC Advances, 2016, 6(71):67039-67048.
[22] QIU B, XING M, ZHANG J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(16):5852-5855.
[23] WANG M, CAI L, JIN Q, et al. One-pot composite synthesis of three-dimensional graphene oxide/poly(vinyl alcohol)/TiO2 microspheres for organic dye removal[J]. Separation and Purification Technology, 2017, 172:217-226.
[24] WANG D, CHOI D, LI J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACS Nano, 2009, 3(4):907-914.
[25] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
[26] WANG J, HAN Z. The combustion behavior of polyacrylate ester/graphite oxide composites[J]. Polymers for Advanced Technologies, 2006, 17(4):335-340.
[27] LIU L, AN M, YANG P, et al. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries[J]. Scientific Reports, 2015, 5:9055.
[28] SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angewandte Chemie International Edition, 2003, 42(40):4908-4911.
[29] ZHANG Z, XIAO F, GUO Y, et al. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities[J]. ACS Applied Materials & Interfaces, 2013, 5(6):2227-2233.
[30] XIANG Q, YU J, JARONIEC M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets[J]. Nanoscale, 2011, 3(9):3670-3678.
[31] LI X, WU D, SHENG H, et al. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance[J]. ACS Applied Materials & Interfaces, 2013, 5(9):3764-3769.
[32] BAI X, WANG L, ZONG R, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization[J]. Langmuir, 2013, 29(9):3097-3105.
[33] LI Y, YANG J, ZHENG S, et al. One-pot synthesis of 3D TiO2-reduced graphene oxide aerogels with superior adsorption capacity and enhanced visible-light photocatalytic performance[J]. Ceramics International, 2016,42(16):19091-19096.
[34] CAI J, LIU W, LI Z. One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis[J]. Applied Surface Science, 2015, 358:146-151.
[35] QIU B, ZHOU Y, MA Y, et al. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis[J]. Scientific Reports, 2015, 5:8591.
[36] PAN L, ZHU X D, XIE X M, et al. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets:hierarchically nanoengineered ternary heterostructures for high-rate lithium storage[J]. Advanced Functional Materials, 2015, 25(22):3341-3350.
[37] ZHOU K, ZHU Y, YANG X, et al. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity[J]. New Journal of Chemistry, 2011, 35(2):353-359.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[4] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[5] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[11] 刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
[12] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[13] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[14] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[15] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持